Condensed Notes
On

Digital Logics

(According to BScCSIT syllabus TU)

e B

T

By Bishnu Rawal

Binary Systems Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 1

Binary Systems

Introduction

We are in “Information age” since digital systems have such a prominent and growing role in modern
society. They are involved in our business transactions, communications, transportation, medical
treatment and entertainment. In industrial world they are heavily employed in design, manufacturing,
distribution and sales.

Analog System
Analog systems process analog signals (continuous time signals) which can take any value within a
range, for example the output from a speaker or a microphone.

An analog meter can display any value within the range available on its scale. * Himﬂ”:fw]
However, the precision of readings is limited by our ability to read them. E.g. 2 \\w}* o ”"’I".ir,r,.é [y
meter on the right shows 1.25V because the pointer is estimated to be half way N W
between 1.2 and 1.3. The analogue meter can show any value between 1.2 and Vv

1.3 but we are unable to read the scale more precisely than about half a division.

Digital System

= Digital systems process digital signals which can take only a limited number of values (discrete
steps), usually just two values are used: the positive supply voltage (+Vs) and zero volts (0V).

= Digital systems contain devices such as logic gates, flip-flops, shift registers and counters.

£.25]

A digital meter can display many values, but not every value within its range. For

example the display on the right can show 6.25 and 6.26 but not a value between
them. This is not a problem because digital meters normally have sufficient digits
to show values more precisely than it is possible to read an analogue display.

The general purpose digital computer is a best known example of digital system.

Generic Digital computer structure

Memory
T = Actually processor contains 4
Y functional modules: CPU,
N FPU, MMU and internal
CPU ¢ ?12301 Datapath cache.

~ = Here only CPU is specified.

Inputs: A
Outputs: LCD
keyboard, mouse, Y _ I . -
o ‘ screen, wireless,
wi eless, Input/Output speakers
microphone
Fig: Block diagram of digital computer
Binary Systems Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

Working principle of generic digital computer: Memory stores programs as well as input, output and
intermediate data. The datapath performs arithmetic and other data-processing operations as specified
by the program. The control unit supervises the flow of information between the various units. A
datapath, when combined with the control unit, forms a component referred to as a central processing
unit, or CPU. The program and data prepared by the user are transferred into memory by means of an
input device such as a keyboard. An output device, such as a CRT (cathode-ray tube) monitor, displays
the results of the computations and presents them to the user.

Advantages of digital system:

» Have made possible many scientific, industrial, and commercial advances that would have been
unattainable otherwise.
= Less expensive

= More reliable

= Easy to manipulate

= Flexibility and Compatibility

= Information storage can be easier in digital computer systems than in analog ones. New features
can often be added to a digital system more easily too.

Disadvantages of digital system:
= Use more energy than analog circuits to accomplish the same tasks, thus producing more heat
as well.
= Digital circuits are often fragile, in that if a single piece of digital data is lost or misinterpreted,
the meaning of large blocks of related data can completely change.

= Digital computer manipulates discrete elements of information by means of a binary code.
= Quantization error during analog signal sampling.

Information Representation

Signals
= Information variables represented by physical quantities.
= For digital systems, the variables take on discrete values.
= Two level or binary values are the most prevalent values in digital systems.
= Binary values are represented abstractly by:
e digitsOand1
e words (symbols) False (F) and True (T)
e words (symbols) Low (L) and High (H)
e and words On and Off.
= Binary values are represented by values or ranges of values of physical quantities
Signal Examples over time

Time J? I T I
B Continuous in
Analog /ﬁ\ //\U
Digital Discrete in
J_I—,__,_ value &
Asynchronous continuous in

time

Synchronouﬂ I DllSCIztt:_m
value & (ime

Binary Systems Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

Here is an example waveform of a quantized signal. Notice how the magnitude of the wave can only
take certain values, and that creates a step-like appearance. This image is discrete in magnitude, but is
continuous in time (asynchronous):

AA AA AA
t t t
Analog signal - Digital signal — large Digital signal — small
continuously varying time divisions time divisions

Signal Example — physical guantity: Voltage

Voltage (Volts)

OUTPUT INPUT 107
HIGH — 1.0 —
0.9 - HIGH 0"\ -
— 0.6 0.0 b— =——Time
L 0.4 A (b) Time-dependent Voltage
1
0.1 < LOW
LOW — 0.0 <
Volts \
Threshold
Region 0 Time

(a) Example voltage ranges (c) Binary model of time-dependent voltage

What are other physical quantities representing 0 and 1?

1. CPU: Voltage

e Disk: Magnetic Field Direction
2. CD: Surface Pits/Light

e Dynamic RAM: Electrical Charge

Number Systems
Here we discuss positional number systems with Positive radix (or base) r. A number with radix r is
represented by a string of digits as below i.e. wherever you guys see numbers of whatever bases, all

numbers can be written in general as:
Radix point

An1Ana2.. A1AVAL AL . A1 A
—/\ Y ERN ~" J\ Least Significant Digit (LSD)

Integer portion (n digits) Fractional portion (m digits)

Most Significant Digit (MSD)

in which 0 < A; < r (since each being a symbol for particular base system viz. for r = 10 (decimal number
system) A; will be one of 0,1,2,...,8,9). Subscript i gives the position of the coefficient and, hence, the
weight r' by which the coefficient must be multiplied.

HEY! Confused? Don’t worry! | will describe specific number systems (r=2, 8, 10 and 16) used in digital
computers later one by one, then the concept will be quite clear.

Binary Systems Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

In general, a number in base r contains r digits, O, |, 2... r- 1, and is expressed as a power series in r with
the general form:
(Number), = A, 1"+ Apo "4 e + AP + AP + A r + AP+ + A r ™+ A r™

(Number),= (IZTH;I, ri)-l-(E-l 4 "j)
i=0 j=-m

(Integer Portion)+ (Fraction Portion)

Decimal Number System (Base-10 system)
Radix (r) =10
Symbols = 0 through r-1 = 0 through 10-1={0, 1, 2... 8, 9}

| am starting from base-10 system since it is used vastly in everyday arithmetic besides computers to
represent numbers by strings of digits or symbols defined above, possibly with a decimal point.
Depending on its position in the string, each digit has an associated value of an integer raised to the
power of 10.
Example: decimal number 724.5 is interpreted to represent 7 hundreds plus 2 tens plus 4 units plus 5
tenths.

724.5=7X10°+2X 10" +4X10°+5X 10"
Binary Number System (Base-2 system)
Radix (r) = 2
Symbols = 0 through r-1 = 0 through 2-1 = {0, 1}

A binary numbers are expressed with a string of 1'sand 0's and, possibly, a binary point within it. The
decimal equivalent of a binary number can be found by expanding the number into a power series with
a base of 2.

Example: (11010.01), can be interpreted using power series as:

(11010.01), =1 X2 +1X 22+ 0X 22 +1X2' +0X2°+0X 2" + 1 X 2= (26.25)10

Digits in a binary number are called bits (Binary digITs). When a bit is equal to 0, it does not contribute
to the sum during the conversion. Therefore, the conversion to decimal can be obtained by adding the
numbers with powers of 2 corresponding to the bits that are equal to 1. Looking at above example,
(11010.01),= 16 + 8 + 2 + 0.25 = (26.25)10.

n 2" n 2an n 27
0 1 8 256 16 65,536
In computer work, | , 9 512 17 131.072
e 2'%s referred to as K (kilo), 2 4 10 1.024 18 262,144
3 8)] § 5724 788
° 220 aSM (mega)' b H‘ 2048 19 o,_!:\
30 i 4 16 12 4096 20 1.048.576
e 27 asG(giga), 5 3 13 819 21 2097.152
e 2%asT (tera) and so on. 6 64 14 16384 22 4,194,304
7 128 15 32,768 23 8,388,608

Table: Numbers obtained from 2 to the power of n
Octal Number System (Base-8 system)
Radix (r) =8
Symbols = 0 through r-1 = 0 through 8-1 ={0, 1, 2...6, 7}

Binary Systems Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

An octal numbers are expressed with a strings of symbols defined above, possibly, an octal point within
it. The decimal equivalent of a octal number can be found by expanding the number into a power series
with a base of 8.

Example: (40712.56)5 can be interpreted using power series as:

(40712.56)5 =4 X 8" +0X 8 +7X8 +1X8 +2X8° +5X 8" +6X8°=(16842.1)y

Hexadecimal Number System (Base-16 system)
Radix (r) =16
Symbols = 0 through r-1 =0 through 16-1={0, 1, 2...9, A, B, C, D, E, F}

A hexadecimal numbers are expressed with a strings of symbols defined above, possibly, a hexadecimal
point with in it. The decimal equivalent of a hexadecimal number can be found by expanding the
number into a power series with a base of 16.

Example: (4D71B.C6),¢ can be interpreted using power series as:

(4D71B.C6)1s = 4X16"+DX16°+7X16°+1X 16" +BX 16°+CX 16" +6 X 16™
4X16"+13X16°+7X16°+1X 16" +11X16°+ 12X 16" + 6 X 167
(317211.7734375).0

Number Base Conversions

Case |: Base-r system to Decimal: Base-r system can be binary (r=2), octal (r=8), hexadecimal (r=16),
base-60 system or any other. For decimal system as destination of conversion, we just use power series
explained above with varying r and sum the result according to the arithmetic rules of base-10 system. |
have already done examples for binary to decimal, octal to decimal and hexadecimal to decimal.

For refreshment lets assume base-1000 number (458HQY)1000. Where n =6 and m = 0.
(458HQY)1000= Ana "+ Apa 24 s + Asr + Ag PP+ A r + A r?+ o + A ™+ A 1™

=4X 1000’ + 5 X 1000* + 8 X 1000° + H X 1000° + Q X 1000" + Y X 1000°

=Resulting number will be in decimal. Here | have supposed various symbols for base-
1000 system. Don’t worry, if someone gives you base-1000 number for conversion, he should also
define all 1000 symbols (0-999).

Case ll: Decimal to Base-r system: Conversion follows following algorithm.
1. Separate the number into integer and fraction parts if radix point is given.
2. Divide “Decimal Integer part” by base r repeatedly until quotient becomes zero and storing
remainders at each step.
3. Multiply “Decimal Fraction part” successively by r and accumulate the integer digits so
obtained.
4. Combine both accumulated results and parenthesize the whole result with subscript r.

Example I: Decimal to binary
° (416875)10 = (?)2
Here Integer part = 41 and fractional part = 0.6875

Binary Systems Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

Integer = 41 Fraction = 0.6875

41 0.6875
20 |1 2
10 |0 1.3750
510 X: 2
2|1 0.7500
110 X 2
011 1.5000
x.2
1.0000

(41),p =(101001), (0.6875),9 =(0.1011),

(41.6875),0 = (101001.1011),
Example II: Decimal to octal
e (153.45)10=(?)s
Here integer part = 153 and fractional part = 0.45

153 0.45
19 (1 This is simply division X8 Multlply.always
2 (3 by 8 | am writing =\ ----m--mm-mm--- the portion after
o |2 Quotients and 3.60 radix point.

remainders only. X8
(153)10 = (231)8 ----------------
4.80
X8

6.40 (may not end, choice
is upon you to end up)
(0.45)10 = (346)s

Example IIl: Decimal to Hexadecimal
[] (145943)10 = (?)16
Here integer part = 1459 and fractional part = 0.43

1459 0.43
91 |4 X16

5 11(=B) = e
0f'l5 6.80
X16

(1459)10 = (534)15 ----------------
12.80

X16

12.80 (Never ending...)
(043)10 = (6CC)3
(1459.43),0 = (5B4.6CC)16

Binary Systems Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

Case lll: Binary to octal & hexadecimal and vice-versa: Conversion from and to binary, octal and

hexadecimal representation plays an important part in digital computers.

Since,

e 2° =8, octal digit can be represented by at least 3 binary digits. (We have discussed this
much better in class). So to convert given binary number into its equivalent octal, we divide
it into groups of 3 bits, give each group an octal symbol and combine the result.

o Integer part: Group bits from right to left of an octal point. 0’s can be added to make
it multiple of 3 (not compulsory).

o Fractional part: Group bits from left to right of an octal point. 0’s must be added to
if bits are not multiple of 3 (Note it).

e 24 =16, each hex digit corresponds to 4 bits. So to convert given binary number into its
equivalent hex, we divide it into groups of 4 bits, give each group a hex digit and combine
the result. If hex point is given, then process is similar as of octal.

e 15 numbersin 4 systems summarized below for easy reference.

Decimal Binary Octal Hexadecimal
(base 10) (base 2) (base 8) (base 16)
00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 03 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

Example:

1. Binary to octal:

(10110001101011.11110000011), = (010 &9 01 @Ql} & @qu 10), = (26153.7406)

2. Binary to hexadecimal:

2

6

1

5

7 4 0 6

(10110001101011.11110000011), = (0010 1100,0110,1011. 1111 0000 0110), = (2C6B.F06);¢

2

C

6

B

F 0 6

3. From hex & octal to binary is quite easy, we just need to remember the binary of particular hex

or octal digit.

(673.12)g =110 111 011.001 010=(110111011.00101),

(3A6.C)16=0011 1010 0110. 1100 = (1110100110.11),

Binary Systems

By Bishnu Rawal

Page 8

Downloaded from CSIT Tutor

Complements

Complements are used in digital computers for simplifying the subtraction operation and for logical
manipulation. There are two types of complements for each base-r system: r's complement and the
second as the (r - 1)'s complement. When the value of the base r is substituted, the two types are
referred to as the 2's complement and 1's complement for binary numbers, the 10's complement and

9's complement for decimal numbers etc.

ﬁl)'s Complement (diminished radix complN
(r-1)'s complement of a number N is defined as

(r"-1)-N
Where N is the given number
ris the base of number system
n is the number of digits in the given
number
To get the (r-1)'s complement fast, subtract each
digit of a number from (r-1).

Example:
- 9's complement of 8354 is 1644, (Rule:
(10" -1) -N)

- 1's complement of 1010, is 0101, (bit by
K bit complement operation) /

Subtraction with complements

K(Zomplement (radix complement)
r's complement of a number N is defined as r"

o

O\
Where N is the given number

ris the base of number system

n is the number of digits in the given

number
To get the r's complement fast, add 1 to the low-
order digit of its (r-1)'s complement.

Example:
10's complement of 8355 is 1645+ 1 =
16510
2's complement of 10102 is 0101, +1 =

0110, /

The direct method of subtraction taught in elementary schools uses the borrow concept. When
subtraction is implemented with digital hardware, this method is found to be less efficient than the

method that uses complements.

The subtraction of two n-digit unsigned numbers M - N in base-r can be done as follows:
1. Add the minuend M to the r's complement of the subtrahend N. This performs

M+ (r"=N)=M-N +r".

2. If M >= N, the sum will produce an end carry, r", which is discarded; what is left is

the result M - N.

3. If M <N, the sum does not produce an end carry and is equal to r" - (N - M), which is
the r's complement of (N - M). To obtain the answer in a familiar form, take the r's
complement of the sum and place a negative sign in front.

Example I:
Using 10’s complement, subtract 72532 — 3250,

M

10's complement of N

Sum
Discard end carry 10° =

ANswer

72532

+ 96750
169282

— 100000
69282

HEY! M has 5 digits and N has only 4 digits.
Both numbers must have the same number of
digits; so we can write N as 03250. Taking the
10's complement of N produces a 9 in the
most significant position. The occurrence of
the end carry signifies that M >= N and the
result is positive.

Binary Systems

Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

Example Il:

Using 10’s complement, subtract 3250 — 72532.

Example lll:

M= 03250
10’s complement of N = + 27468
Sum = 30718

There is no end carry.
Answer: —(10’s complement of 30718) = —69282

Given the two binary numbers X = 1010100 and ¥ = 1000011, perform the subtrac-
tion (a) X — Y and (b) ¥ — X using 2’s complements.

(a)

{b)

Answer: Y — X = —(2’s complement of 1101111) = ~0010001

X = 1010100

2’s complement of ¥ = + 0111101
Sum = 10010001

Discard end carry 27 = —10000000
Answer: X — Y = 0010001

Y = 1000011

2’s complement of X = + 0101100
Sum = 1101111

There is no end carry.

Example IV: Repeating Example Ill using 1’s complement.

(a) X — ¥ = 1010100 — 1000011

(b) ¥ — X = 1000011 1010100

Answer:Y — X =

X = 1010100

1's complement of ¥ = + 0111100
Sum = ~—— 10010000

End-around carry s + |
Answer: X — Y = 0010001

Y = 1000011

I's complement of X = + 0101011
Sum = 1101110

There is no end carry.

-(1’s complement of 1101110) = —0010001

Binary Systems

By Bishnu Rawal
Downloaded from CSIT Tutor

Page 10

Binary Codes

Electronic digital systems use signals that have two distinct values and circuit elements that have two
stable states. There is a direct analogy among binary signals, binary circuit elements, and binary digits. A
binary number of n digits, for example, may be represented by n binary circuit elements, each having an
output signal equivalent to a 0 or a 1. Digital systems represent and manipulate not only binary
numbers, but also many other discrete elements of information. Any discrete element of information
distinct among a group of quantities can be represented by a binary code. Binary codes play an
important role in digital computers. The codes must be in binary because computers can only hold 1's
andO's.

1. Binary Coded Decimal (BCD)

The binary number system is the most natural system for a computer, but people are accustomed to the
decimal system. So, to resolve this difference, computer uses decimals in coded form which the
hardware understands. A binary code that distinguishes among 10 elements of decimal digits must
contain at least four bits. Numerous different binary codes can be obtained by arranging four bits into
10 distinct combinations. The code most commonly used for the decimal digits is the straightforward
binary assignment listed in the table below. This is called binary-coded decimal and is commonly
referred to as BCD.

Decimal BCD
Symbol Digit
A number with n decimal digits will require 4n bits
0 0000 in BCD. E.g. decimal 396 is represented in BCD
I 0001 with 12 bits as 0011 1001 0110.
2 0010 = Numbers greater than 9 has a representation
3 0011 different from its equivalent binary number, even
4 0100 though both contain 1's and 0's.
5 0101 » Binary combinations 1010 through 1111 are not
6 0110 used and have no meaning in the BCD code.
7 0111 » Example:
8 1000
9 1001 (185),,= (0001 1000 0101)gcp = (101 11001)2/

Table: 4-bit BCD code for decimal digits

2. Error-Detection codes

Binary information can be transmitted from one location to another by electric wires or other
communication medium. Any external noise introduced into the physical communication medium may
change some of the bits from 0 to 1 or vice versa.

The purpose of an error-detection code is to detect such bit-reversal errors. One of the most common
ways to achieve error detection is by means of a parity bit. A parity bit is the extra bit included to make
the total number of 1's in the resulting code word either even or odd. A message of 4-bits and a parity
bit P are shown in the table below:

Binary Systems Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

Qdd panty Even parity
Message P Message P
0000 1 0000 0
0001 0 0001 1
0010 0 0010 I
0011 1 0011 0
C100 0 0100 1
Qi01 1 0101 0
0110 1 0110 0
0111 0 011t 1
1000 0 1000 1
1001 1 1001 0
1010 1 1010 0
1011 0 1011 l
1100 1 1100 0
1101 0 1101 1
1110 0 1170 1
1111 1 111 0

3. Gray code (Reflected code)

@Checking Mechanism: \

- During the transmission of information from one location
to another, an even parity bit is generated in the sending end
for each message transmission. The message, together with
the parity bit, is transmitted to its destination. The parity of
the received data is checked in the receiving end. If the
parity of the received information is not even, it means
that at least one bit has changed value during the
transmission.

—->This method detects one, three, or any odd combination
of errors in each message that is transmitted. An even
combination of errors is undetected. Additional error-

detection schemes may be needed to take care of an even
Wnation of errors. /

It is a binary coding scheme used to represent digits generated from a mechanical sensor that may

be prone to error. Used in telegraphy in the late 1800s, and also known as "reflected binary code”.

Gray code was patented by Bell Labs researcher Frank Gray in 1947. In Gray code, there is only one
bit location different between two successive values, which makes mechanical transitions from one
digit to the next less error prone. The following chart shows normal binary representations from 0 to
15 and the corresponding Gray code.

The Gray code is used in applications where the normal sequence of binary numbers may produce an
error or ambiguity during the transition from one number to the next. If binary numbers are used, a
change from 0111 to 1000 may produce an intermediate erroneous number 1001 if the rightmost bit
takes more time to change than the other three bits. The Gray code eliminates this problem since only

Decimal digit

O oo NOYULLS~ WNEO

e el
U D WNRLO

Binary code Gray code
0000 0000
0001 0001
0010 0011
0011 0010
0100 0110
0101 0111
0110 0101
0111 0100
1000 1100
1001 1101
1010 1111
1011 1110
1100 1010
1101 1011
1110 1001
1111 1000

one bit changes in value during any transition between two numbers.

Binary Systems

Page 12

By Bishnu Rawal

Downloaded from CSIT Tutor

4. Alphanumeric codes
Alphanumeric character set is a set of elements that includes the 10 decimal digits, 26 letters of the
alphabet and special characters such as $, %, + etc. It is necessary to formulate a binary code for this
set to handle different data types. If only capital letters are included, we need a binary code of at
least six bits, and if both uppercase letters and lowercase letters are included, we need a binary
code of at least seven bits.

e ASCII character code
The standard binary code for the alphanumeric characters is called ASCIl (American
Standard Code for Information Interchange). It uses seven bits to code 128 characters as
shown in the table below. The seven bits of the code are designated by B; through B; with
B, being the most significant bit.

American Standard Code for Information Interchange (ASCII)

B.B.B.

B.B.B.B, 000 001 o010 on 100 101 110 11
0000 NULL DLE SP 0 @ P ’ P
0001 SOH DC1 ! 1 A Q a q [NOTE: \
0010 \l\ D(:3 R 2 l% R b r Decimal digits
0011 ETX DC3 4 3 C S c s .
0100 EOT DC4 $ a D I d t in ASCII can be
0101 ENQ NAK 5 E (e u converted to
0110 ACK SYN & 6 F V f v BCD by
0111 BEI ETB ' 7 G W g w . th
1000 BS CAN 8 H X h x removing the
1001 HT EM) 9 I Y i y three higher
1010 LF SUB ’ : J Z) z order bits,
1011 V1 ESC + : K | k {
1100 FF FS ‘ < L \ | | 011.
1101 CR GS = M] m }
1110 SO RS : > N 5 n ~
111 Sl Us 0 - o DEL
Various control character symbolic notation stands for:
NULL NULL DLE Data link escape
SOH Start of heading DCI Device control 1
STX Start of text DC2 Device control 2
ETX End of text DC3 Device control 3
EOT End of transmission DC4 Device control 4
ENOQ [;nqu]n NAK Negative Jcknn\vlcdgc
ACK Acknowledge SYN Synchronous idle
BEL Bell ETB End of transmission block
BS Backspace CAN Cancel
Hl Horizontal tab EM End of medium
LF Line feed SUB Substitute
Vi Vertical tab ESC Escape
Fi Form feed FS File separator
CR Carrniage return GS Group separator
SO Shift out RS Record separator
SI Shift in uUs Unit separator
SpP Space DEI Delete

Example: ASCII for each symbol is (B;B¢BsB4B3B;B;)

G € 1000111, (€ 0101000, h € 1101000, > € 011 1110 and so on.

Binary Systems Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

e EBCDIC character code
EBCDIC (Extended Binary Coded Decimal Interchange Code) is another alphanumeric code
used in IBM equipment. It uses eight bits for each character. EBCDIC has the same character
symbols as ASCII, but the bit assignment for characters is different. As the name implies, the
binary code for the letters and numerals is an extension of the binary-coded decimal (BCD)
code. This means that the last four bits of the code range from 0000 though 1001 as in BCD.

Integrated Circuits (ICs)

An Integrated circuit is an association (or connection) of various electronic devices such as resistors,
capacitors and transistors etched (or fabricated) to a semiconductor material such as silicon or
germanium. It is also called as a chip or microchip. An IC can function as an amplifier, rectifier, oscillator,
counter, timer and memory. Sometime ICs are connected to various other systems to perform complex
functions.

Types of ICs
ICs can be categorized into two types
e Analog or Linear ICs
e Digital or logic ICs
Further there are certain ICs which can perform as a combination of both analog and digital functions.

Analog or Linear ICs: They produce continuous output depending on the input signal. From the name of
the IC we can deduce that the output is a linear function of the input signal. Op-amp (operational
amplifier) is one of the types of linear ICs which are used in amplifiers, timers and counters, oscillators
etc.

Digital or Logic ICs: Unlike Analog ICs, Digital ICs never give a continuous output signal. Instead it
operates only during defined states. Digital ICs are used mostly in microprocessor and various memory
applications. Logic gates are the building blocks of Digital ICs which operate either at 0 or 1.

Advantages of ICs

e |n consumer electronics, ICs have made possible the development of many new products,
including personal calculators and computers, digital watches, and video games.

e They have also been used to improve or lower the cost of many existing products, such as
appliances, televisions, radios, and high-fidelity equipment.

e The logic and arithmetic functions of a small computer can now be performed on a single
VLSI chip called a microprocessor.

o Complete logic, arithmetic, and memory functions of a small computer can be packaged on
a single printed circuit board, or even on a single chip.

Levels of Integration

During 1959 two different scientists invented IC’s. Jack Kilby from Texas Instruments made his first
germanium IC during 1959 and Robert Noyce made his first silicon IC during the same year. But ICs were
not the same since the day of their invention; they have evolved a long way. Integrated circuits are often
classified by the number of transistors and other electronic components they contain:

= SS| (small-scale integration): Up to 100 electronic components per chip
= MSI (medium-scale integration): From 100 to 3,000 electronic components per chip

Binary Systems Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

= LSl (large-scale integration): From 3,000 to 100,000 electronic components per chip
= VLSI (very large-scale integration): From 100,000 to 1,000,000 electronic components per chip
= ULSI (ultra large-scale integration): More than 1 million electronic components per chip

SIP (Single In-line Package) and DIP (Dual In-line Package)

sip

A single in-line package is an electronic device package which has one row of connecting pins. It is not
as popular as the dual in-line package (DIP) which contains two rows of pins, but has been used for
packaging RAM chips and multiple resistors with a common pin. SIPs group RAM chips together on a
small board. The board itself has a single row of pin-leads that resembles a comb extending from its
bottom edge, which plug into a special socket on a system or system-expansion board. SIPs are
commonly found in memory modules. SIP is not to be confused with SIPP which is an archaic term
referring to Single In-line Pin Package which was a memory used in early computers.

///// b '

DIP

Dual in-line package (DIP) is a type of semiconductor component packaging. DIPs can be installed either
in sockets or permanently soldered into holes extending into the surface of the printed circuit board. DIP
is relatively broadly defined as any rectangular package with two uniformly spaced parallel rows of pins
pointing downward, whether it contains an IC chip or some other device(s), and whether the pins
emerge from the sides of the package and bend downwards. A DIP is usually referred to as a DIPn,
where n is the total number of pins.

For example, a microcircuit package with two rows of seven vertical leads would be a DIP14. The
photograph below shows three DIP14 ICs.

Several DIP variants for ICs exist, mostly distinguished by packaging material:
= Ceramic Dual In-line Package (CERDIP or CDIP)
= Plastic Dual In-line Package (PDIP)
= Shrink Plastic Dual In-line Package (SPDIP) -A denser version of the PDIP with a 0.07 in.
(1.778 mm) lead pitch.
= Skinny Dual In-line Package (SDIP) — Sometimes used to refer to a 0.3 in. wide DIP, normally
when clarification is needed e.g. for a 24 or 28 pin DIP.

Binary Systems Page 15

By Bishnu Rawal
Downloaded from CSIT Tutor

S~ |
Fig: Several PDIPs and CERDIPs. The large CERDIP in the foreground is an Intel 8080
microprocessor.

SIMM (Single In-line Memory Module) and DIMM (Dual In-line Memory Module)

Theses two terms (SIMM and DIMM) refer to a way series of dynamic random access memory
integrated circuits modules are mounted on a printed circuit board and designed for use in personal
computers, workstations and servers.

SIMM

Short for Single In-line Memory Module, SIMM is a circuit board that holds six to nine memory chips
per board, the ninth chip usually an error checking chip (parity/non parity) and were commonly used
with Intel Pentium or Pentium compatible motherboards. SIMMs are rarely used today and have been
widely replaced by DIMMs. SIMMs are available in two flavors: 30 pin and 72 pin. 30-pin SIMMs are the
older standard, and were popular on third and fourth generation motherboards. 72-pin SIMMs are used
on fourth, fifth and sixth generation PCs.

4MB 72-PIN SIMM
72 PIN SIMM 30 PIN SIMM

B RAM CHIPS

B RAM CHIPS

NITINNIIR I-Illllllllllll-

| il e

ROTOH
72 FINS HOTCH .
FIM1

DIMM

Short for Dual In-line Memory Module, DIMM is a circuit board that holds memory chips. DIMMs have a
64-bit path because of the Pentium Processor requirements. Because of the new bit path, DIMMs can be
installed one at a time, unlike SIMMSs on a Pentium that would require two to be added. Below is an
example image of a 512MB DIMM memory stick.

Binary Systems Page 16

By Bishnu Rawal
Downloaded from CSIT Tutor

SO-DIMM is short for Small Outline DIMM and is available as a 72-pin and 144-pin configuration. SO-
DIMMs are commonly utilized in laptop computers.

Some of the advantages DIMMs have over SIMMs:
= DIMMs have separate contacts on each side of the board, thereby providing twice as much data
as a single SIMM.
= The command address and control signals are buffered on the DIMMSs. With heavy memory
requirements this will reduce the loading effort of the memory.

Description of a few types of chips (Just for Knowledge, not in syllabus)

CMOS: in computer science, acronym for complementary metal-oxide semiconductor. A semiconductor
device that consists of two metal-oxide semiconductor field effect transistors (MOSFETs), one N-type
and one P-type, integrated on a single silicon chip. Generally used for RAM and switching applications,
these devices have very high speed and extremely low power consumption. They are, however, easily
damaged by static electricity.

Digital Signal Processor (DSP): An integrated circuit designed for high-speed data manipulations, used in
audio, communications, image manipulation, and other data-acquisition and data-control applications.

Dynamic RAM (DRAM): In computer science, a form of semiconductor random access memory (RAM).
Dynamic RAMs store information in integrated circuits that contain capacitors. Because capacitors lose
their charge over time, dynamic RAM boards must include logic to "refresh” (recharge) the RAM chips
continuously. While a dynamic RAM is being refreshed, it cannot be read by the processor; if the
processor must read the RAM while it is being refreshed, one or more wait states occur. Because their
internal circuitry is simple, dynamic RAMs are more commonly used than static RAMs, even though they
are slower. A dynamic RAM can hold approximately four times as much data as a static RAM chip of the
same complexity.

EPROM: In computer science, acronym for erasable programmable read-only memory, also called
reprogrammable read-only memory (RPROM). EPROMs are nonvolatile memory chips that are
programmed after they are manufactured. EPROMs are a good way for hardware vendors to put
variable or constantly changing code into a prototype system when the cost of producing many PROM
chips would be prohibitive. EPROMs differ from PROMs in that they can be erased, generally by
removing a protective cover from the top of the chip package and exposing the semiconductor material
to ultraviolet light, and can be reprogrammed after having been erased. Although EPROMSs are more
expensive than PROMs, they can be more cost-effective in the long run if many changes are needed.

PROM: Acronym for programmable read-only memory. In computer science, a type of read-only
memory (ROM) that allows data to be written into the device with hardware called a PROM
programmer. After a PROM has been programmed, it is dedicated to that data, and it cannot be

Binary Systems Page 17

By Bishnu Rawal
Downloaded from CSIT Tutor

reprogrammed. Because ROMs are cost-effective only when produced in large volumes, PROMs are
used during the prototyping stage of the design. New PROMs can be created and discarded as needed
until the design is perfected.

Reduced Instruction Set Computer (RISC): Type of microprocessor that focuses on rapid and efficient
processing of a relatively small set of instructions. RISC design is based on the premise that most of the
instructions a computer decodes and executes are simple. As a result, RISC architecture limits the
number of instructions that are built into the microprocessor but optimizes each so it can be carried out
very rapidly-usually within a single clock cycle. RISC chips thus execute simple instructions faster than
microprocessors designed to handle a much wider array of instructions.

ROM: Acronym for read-only memory. In computer science, semiconductor-based memory that
contains instructions or data that can be read but not modified. To create a ROM chip, the designer
supplies a semiconductor manufacturer with the instructions or data to be stored; the manufacturer
then produces one or more chips containing those instructions or data. Because creating ROM chips
involves a manufacturing process, it is economically viable only if the ROM chips are produced in large
guantities; experimental designs or small volumes are best handled using PROM or EPROM. In general
usage, the term ROM often means any read-only device, including PROM and EPROM.

Static RAM (SRAM): In computer science, a form of semiconductor memory (RAM). Static RAM storage
is based on the logic circuit known as a flip-flop, which retains the information stored in it as long as
there is enough power to run the device. A static RAM chip can store only about one-fourth as much
data as a dynamic RAM chip of the same complexity, but static RAM does not require refreshing and is
usually much faster than dynamic RAM. It is also more expensive. Static RAMs are usually reserved for
use in caches.

Binary Systems Page 18

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 2

Boolean algebra and Logic Gates

Before starting the discussion of Boolean algebra and complex logic gates (NAND, XOR etc), let me
describe bit about the binary logic (which you guys have studied in discrete structure course) and how
this logic is implemented in hardware using basic gates?

Binary logic

Binary logic consists of binary variables and logical operations. The variables are designated by letters of
the alphabet such as A, B, C, x, y, Z, etc., with each variable having two and only two distinct possible
values: 1 and 0. There are three basic logical operations: AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For example, x.y =
zorxy=zisread "x AND y is equal to z." The logical operation AND is interpreted to mean that z
=1lifandonlyif x =1 and y = 1; otherwise z = 0. (Remember that x, y, and z are binary variables
and can be equal either to 1 or 0, and nothing else.)

2. OR: This operation is represented by a plus sign. For example, x + y = z is read "x OR y is equal to
z," meaning thatz=0if x=0orif y = 0 otherwise z = 1.

3. NOT: This operation is represented by a prime (sometimes by a bar). For example, x' = z is read
"not x is equal to z," meaning that z is what x is not. In other words, if x =1, then z = 0; but if x =
0,thenz=1.

These definitions may be listed in a compact form using truth tables. A truth table is a table of all
possible combinations of the variables showing the relation between the values that the variables may
take and the result of the operation.

Truth Tables of Logical Operatlons

AND OR NOT
X ¥ Xy X ¥ x+y X X'
LIt D 00 a 0 i
01 0 01 1 i 0
1 0 0 1 0 1
Pl 1 1 1

HEY! Binary logic should not be confused with binary arithmetic (However we use same symbols here).
You should realize that an arithmetic variable designates a number that may consist of many digits. A
logic variable is always either 1 or 0. For example, in binary arithmetic, 1 + 1 = 10 (read: "one plus one is
equal to 2"), whereas in binary logic, we have 1 + 1 = 1 (read: "one OR one is equal to one").

Switching circuits and Binary Signals
The use of binary variables and the application of binary logic are demonstrated by the simple switching

circuits shown below:
- @)L ' “a° @ L

A B I
Voltage Voltage B
SOUTCE SOUTES
(a)Switches in series-Logical AND (b) Switches in parallel-Logical OR
Boolean Algebra and Logic Gates Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

Let the manual switches A and B represent two binary variables with values equal to 0 when the switch
is open and 1 when the switch is closed. Similarly, let the lamp L represent a third binary variable equal
to 1 when the light is on and 0 when off.

Electronic digital circuits are sometimes called switching circuits because they behave like a switch, with
the active element such as a transistor either conducting (switch closed) or not conducting (switch
open). Instead of changing the switch manually, an electronic switching circuit uses binary signals to
control the conduction or non-conduction state of the transistor.

Basic Logic Gates (Digital logic gates will be covered in detail later)

Logic gates are electronic circuits that operate on one or more input signals to produce an output signal.
Electrical signals such as voltages or currents exist throughout a digital system in either one of two
recognizable values (bi-state 0 or 1). Voltage-operated circuits respond to two separate voltage ranges
(Example of voltage ranges is discussed in unit 1) that represent a binary variable equal to logic 1 or logic
0. The graphics symbols used to designate the three types of gates AND, OR, and NOT are shown in
Figure below:

\ -
y) L=X-Y ﬁhese circuits, called gates, are blocks of

hardware that produce a logic-1 or logic-0

output signal if input logic requirements are

satisfied.

. D Z=X~+Y = Note that four different names have been used

Y for the same type of circuits: digital circuits,
switching circuits, logic circuits, and gates.

= AND and OR gates may have more than two

X 7 =X inputs.
' = NOT gate is single input circuit, it simply inverts
NOT gate or the input.

mvericr
ﬁwo input signals X and Y to the AND and ON

(a) Graphic symbols
gates take on one of four possible combinations: 00,

01, 10, or 11. These input signals are shown as
\1 " I : I " I : [timing diagrams, together with the timing diagrams

for the corresponding output signal for each type of

gate. The horizontal axis of a timing diagram

S I ' [represents time, and the vertical axis shows a signal
as it changes between the two possible voltage
levels. The low level represents logic 0 and the high
level represents logic I. 111e AND gate responds with

X 0 0 | 1

(AND) \~\.—l 0 0

(NOT) X ! | 0 a logic-1 output signal when both input signals are
logic-1. The OR gate responds with a logic-1 output
(b) Timing diagram signal if either input signal is logic-1. /
Boolean Algebra and Logic Gates Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

Boolean algebra
In 1854 George Boole introduced a systematic treatment of logic and developed for this purpose an
algebraic system now called Boolean algebra. In 1938 C. E. Shannon introduced a two-valued Boolean
algebra called switching algebra, in which he demonstrated that the properties of bistable electrical
switching circuits can be represented by this algebra.
Thus, the mathematical system of binary logic is known as Boolean or switching algebra. This algebra is
conveniently used to describe the operation of complex networks of digital circuits. Designers of digital
systems use Boolean algebra to transform circuit diagrams to algebraic expressions and vice versa. For
any given algebra system, there are some initial assumptions, or postulates, that the system follows. We
can deduce additional rules, theorems, and other properties of the system from this basic set of
postulates. Boolean algebra systems often employ the postulates formulated by E. V. Huntington in
1904.
Postulates
Boolean algebra is an algebraic structure defined on a set of elements B (Boolean system) together with
two binary operators + (OR) and * (AND) and unary operator ' (NOT), provided the following postulates
are satisfied:

P1-> Closure: Boolean algebra is closed under the AND, OR, and NOT operations.

P2-> Commutativity: The ¢ and + operators are commutativei.e. x+y=y+xand x e y =y e x, for all

X,y € B.

P3-> Distribution: * and + are distributive with respect to one another i.e.

xe(y+z)=(xoy)+(xe2z).
x+(yez)=(x+y)e(x+2z), forallx,y, z€B.

P4-> Identity: The identity element with respectto eisland+isOie.x+0=0+x=xand x ® 1=1e

x = X. There is no identity element with respect to logical NOT.

P5-> Inverse: For every value x there exists a value x' such that x x' =0 and x + x' = 1. This value is

the logical complement (or NOT) of x.

P6-> There exists at least two elements x, y € B such that x #y.

One can formulate many Boolean algebras (viz. set theory, n-bit vectors algebra), depending on the
choice of elements of B and the rules of operation. Here, we deal only with a two-valued Boolean
algebra, i.e., B = {0, 1}. Two-valued Boolean algebra has applications in set theory and in propositional
logic. Our interest here is with the application of Boolean algebra to gate-type circuits.

Basic theorems and Properties of Boolean algebra

Duality

Postulates of Boolean algebra are found in pairs; one part may be obtained from the other if the binary
operators and the identity elements are interchanged. This important property of Boolean algebra is
called the duality principle. It states that “Every algebraic expression deducible from the postulates of
Boolean algebra remains valid if the operators and identity elements are interchanged”. In a two-
valued Boolean algebra, the identity elements and the elements of the set B are the same: 1 and 0. If
the dual of an algebraic expression is desired, we simply interchange OR and AND operators and replace
1's by O'sand 0's by 1's.

Boolean Algebra and Logic Gates Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

Basic theorems

The theorems, like the postulates, are listed in pairs; each relation is the dual of the one paired with it.
The postulates are basic axioms of the algebraic structure and need no proof. The theorems must be
proven from the postulates. six theorems of Boolean algebra are given below:

Theorem1: Idempotence (a)x+x=x (b) x.x=x

Theorem2: Existence: 0&1 (a)x+1=1 (b)x.0=0 } One variable theorems
Theorem3: Involution (x')' =x

Theorem4: Associative () x+(y+z)=(x+y)+z (b) x(yz) = (xy)z

Theoremb5: Demorgan (a) (x+y)' =x'y' (b) (xy)' =x"+y' 2 or 3 variable theorems
Theoremé6: Absorption (a) x + xy =x (b) x(x +y)=x

Proofs:

(@) The proofs of the theorems with one variable are presented below:

THEOREM 1(a): x + x = x

Xx+x =(x+x).1 (P4: Identity element)
=(x+x)(x +x') (P5: Existence of inverse)
=X+ xx' (P3: Distribution)
=x+0 (P5: Existence of inverse)
=X (P4: Identity element)

THEOREM 1(b): x-x = x

X.X =xx+0 (P4: Identity element)
=XX + XX' (P5: Existence of inverse)
=x(x + x') (P3: Distribution)
=x.1 (P5: Existence of inverse)
=X (P4: Identity element)

Hey! Each step in theorem 1(b) and 1(a) are dual of each other.

THEOREM 2(a): x+1=1

x+1 =1-(x+1) (P4: Identity element)
=(x+x')(x+1) (P5: Existence of inverse)
=x+x"1 (P3: Distribution)
=x+x' (P4: Identity element)
=1 (P5: Existence of inverse)

THEOREM 2(b): x.0 = 0 by duality.

THEOREM 3: (x')' = x. From P5, we have x + x' =1 and x.x' = 0, which defines the complement of x. The
complement of x'is x and is also (x')". Therefore, since the complement is unique, we have that (x')' = x.

(b) The theorems involving two or three variables may be proven algebraically from the postulates and
the theorems that have already been proven. For example, lets prove Demorgan’s theorem:

THEOREM 5(a): (x +y)' = x'y'

From postulate P5 (Existence of inverse), for every x in a Boolean algebra there is a
unique x' such that

x+x'=landxex'=0

Boolean Algebra and Logic Gates Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

So it is sufficient to show that x'y' is the complement of x +y. We'll do this by showing that (x +y) +
(x'y')=1and (x+y) e (x'y') = 0.

(x+y)+(xy') =[x+y)+xT[(x+y)+y] [OR distributes over AND (P3)]
=[(y+x) +xT[(x+y) +y] [OR is commutative (P2)]
=ly+(x+x)] [x+(y+y)] [OR is associative (Theorem 3(a)), used twice]
=(y+1)(x+1) [Complement, x + x' =1 (P5), twice]
=1le1 [x+1=1, (Theorem 2), twice]
=1 [Ildempotent, x ® x = x (Theorem 1)]
Also,
(x +y)(x'y") =(x'y') (x+vy) [AND is commutative (P2)]
= [(x'y') x] + [(x'y') y] [AND distributes over OR (P3)]
= [(y'x')x] + [(x'y')y] [AND is commutative (P2)]
= [y'(x'x)] + [x'(y'y)] [AND is associative (Theorem 3(b)), twice]
= [y'(xx")] + [x'(yy')] [AND is commutative, twice]
=[y' e 0] +[x' * 0] [Complement, x ® x' = 0, twice]
=0+0 [x ®0=0, twice]
=0 [ldempotent, x + x = x]

THEOREM 5(a): (xy)' = x' + y' € can be proved similarly as in Theorem 5(a). Each step in the proof of 5(b)
is the dual of its 5(a) counterparts.

Hey! Theorems above can also be proved using truth tables (alternative to algebraic simplification). Viz.

theorem 6(a) can be proved as:
=/

X y I Xy | x + xy
00 0 0
0 | 0 0
1 0 0 | 1
S U S S |

Operator Precedence
The operator precedence for evaluating Boolean expressions is
1. Parentheses—>()

2. NOT->'
3. AND-.
4. OR—>+

In other words, the expression inside the parentheses must be evaluated before all other operations.
The next operation that holds precedence is the complement, then follows the AND, and finally the OR.
Example: (a+b.c).d' = here we first evaluate ‘b.c’ and OR it with ‘@’ followed by ANDing with
complement of ‘d’.

Boolean Functions

A Boolean function is an expression formed with binary variables (variables that takes the value of 0 or
1), the two binary operators OR and AND, and unary operator NOT, parentheses, and an equal sign. For
given value of the variables, the function can be either 0 or 1.

Boolean Algebra and Logic Gates Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

e Boolean function represented as an algebraic expression: Consider Boolean function F; = xyz'.
Function F is equal to 1 if x=1, y=1 and z=0; otherwise F; =0. Other examples are: F, =x +y'z, F3 =
X'y'z +x'yz + xy', F4 = xy' + x'z etc.

e Boolean function represented in a truth table:

The number of rows in the truth table is 2", where n is the number of binary variables in the
function, The 1's and 0's combinations for each row is easily obtained from the binary numbers
by counting from 0 to 2" - 1.

>
N
n
)
o
A

—_——_ - - o cCcCc
—_-—0 0 = = C o |k
eI = B Bt
o—ooccco'
_—— = - 0 O = O
CO m = = O = O
OO = = -0 =

Million Dollar question®: Is it possible to find two algebraic expressions that specify the same
function? Answer is: yes. Being straightforward, the manipulation of Boolean algebra is applied
mostly to the problem of finding simpler expressions for the same function.

Example: Functions F; and F4 are same although they have different combinations of binary

variables with in them.

A Boolean function may be transformed from an algebraic expression into a logic diagram
composed of AND, OR, and NOT gates. The implementation of the four functions introduced in
the previous discussion is shown below:

X | 0 ———
e — >
x 2
y

(a) F, =xy? (b) F, =x+yz
X N
V
. | \
’ | iy
Fy
: —

() Fy =xyz+ xyz+xy

Boolean Algebra and Logic Gates Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

v o
D

(d} F, =x"+x%

| >——n,

U U

Fig: Implementation of Boolean functions with gates

Algebraic manipulation and simplification of Boolean function
= A literal is a primed or unprimed (i.e. complemented or un-complemented) variable. When a
Boolean function is implemented with logic gates, each literal in the function designates an input to
a gate, and each term is implemented with a gate.
= The minimization of the number of literals and the number of terms results in a circuit with less
equipment. It is not always possible to minimize both simultaneously; usually, further criteria must
be available. At the moment, we shall narrow the minimization criterion to literal minimization. We
shall discuss other criteria in unit 3.
= The number of literals in a Boolean function can be minimized by algebraic manipulations.
Unfortunately, there are no specific rules to follow that will guarantee the final answer. The only
method available is a cut-and-try procedure employing the postulates, the basic theorems, and any
other manipulation method that becomes familiar with use. The following examples illustrate this
procedure.
->Simplify the following Boolean functions to a minimum number of literals.
1. x+x'y=(x+x')(x+y)=1.(x+y)=x+y
2. X(x'+y)=xx"+xy=0+xy=xy
3. XYz+xyz+xy' =x'z(y' +y) +xy=x'z+xy
4, xy+x'z+yz=xy+x'z+yz(x+x')
=Xy + X'2+Xxyz +x'yz
=xy(1+2z)+x'z(1+y)
=Xy + X'z
5. (x+y)(x'+z)(y+z)=(x+y)(x"+z) by duality from function 4.

Complement of a function

The complement of a function Fis F' and is obtained from an interchange of 0's for 1's and 1's for 0's in
the value of F. The complement of a function may be derived algebraically through DeMorgan's
theorem. DeMorgan's theorems can be extended to three or more variables. The three-variable form of
the first DeMorgan's theorem is derived below.

(A+B+C) =(A+X)' let B+ C=X
=AX' (DeMorgan)
=A“(B+C)' substituteB+C=X
=A'.(B'C') (DeMorgan)
=A'B'C' (associative)

DeMorgan's theorems for any number of variables resemble in form the two variable case and can be
derived by successive substitutions similar to the method used in the above derivation. These theorems
can be generalized as follows:

(A+B+C+D+...+F)'=ABCD'...F

(ABCD ...F)'=A"+B'+C'+D'+...4+F'

Boolean Algebra and Logic Gates Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

The generalized form of De Morgan's theorem states that the complement of a function is obtained by
interchanging AND and OR operators and complementing each literal.

Two ways of getting complement of a Boolean function:
1. Applying DeMorgan’s theorem:
Question: Find the complement of the functions F; = x'yz'+ x'y'zand F, = x(y'z' + yz).
By applying DeMorgan's theorem as many times as necessary, the complements are obtained as
follows:
Fi'=(x'yz' +x'y'z)' = (x'y2')'(X'y'z) = (x+y' + z)(x + y + 2')
Fol = [x(y'z' +yz)]" =x"+ (y'z' +yz)' =x" + (y'2')" (yz)' = X"+ (y + Z)(y' + 2')
2. First finding dual of the algebraic expression and complementing each literal
Question: Find the complement of the functions F; and F, of example above by taking their duals
and complementing each literal.
o Fi=x'yz'+x'yz
The dual of Fyis (x'+y +Z')(x'+y' + z).
Complement each literal: (x +y'+z)(x +y+2z')=F;".
o F=x(yz' +yz).
The dual of F;isx + (y'+ 2')(y + z).
Complement each literal: x'+ (y + z)(y'+ z') = F," .

Other logic operations

When the binary operators AND and OR are placed between two variables, x and y, they form two
Boolean functions, x.y and x + y, respectively. There are 22" functions for n binary variables. For two
variables, n, and the number of possible Boolean functions is 16. Therefore, the AND and OR functions
are only two of a total of 16 possible functions. It would be instructive to find the other 14 functions and
investigate their properties.

Truth Tables for the 16 Functions of Two Binary Variables

Ky ke AR R R R R E R R Fo R Fo Fa Fa s

o —

O 0 o o 0 0 o 0 0 0 1 i [1 1 | | 1
o 1 0O o ¢ 0o 1t t 1 1 0 0o 0 0 |] l 1
I 0 O o 1 1 ¢ 0 1 1 0 0 1 | 0 0 1 |
[o+ ¢ 1 0 1 0 ¥ 0 1 0 1 0 I 0 1
Operator
symbol . / e + § & C ’ o

The 16 functions listed in truth table form above can be expressed algebraically by means of Boolean

expressions as in following table. Each of the functions is listed with an accompanying name and a

comment that explains the function in some way. The 16 functions listed can be subdivided into three

categories:

1. Two functions that produce a constant 0 or 1.

2. Four functions with unary operations: complement and transfer.

3. Ten functions with binary operators that define eight different operations: AND, OR, NAND. NOR,
exclusive OR, equivalence, inhibition, and implication.

Boolean Algebra and Logic Gates Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

Boolean functions Operator Name Comments

symbol
=0 Null Binary constant
Fi=xy Xy AND xand y
FH=xy x/y Inhibition x but not y
F=x Transfer X
Fy=x'y y/x Inhibition y but not x
F=y Transfer y
FF=xy' +x'y xDy Exciusive-OR x or y but not both
Fr=x+y xr+y OR xory
Fo=(x + y) xly NOR Not-OR
Fy=xy +x'y' xrQy Equivalence x equals y
Fio =y’ ¥y Complement Not y
Fho=x+y' xCy Implication If y then x
Fp=1x' x! Complement Not x
Fy=x"+y xDy Implication If x then y
Fua= (xy) xty NAND Not-AND
Fs=1 Identity Binary constant 1

Table: Boolean Expressions for the 16 Functions of Two Variables

Digital Logic gates (In detail)
Boolean functions are expressed in terms of AND, OR, and NOT logic operations, and hence are easier to
implement with these types of gates. The possibility of constructing gates for the other logic operations
is of practical interest. Factors to be weighed when considering the construction of other types of logic
gates are:

e The feasibility and economy of producing the gate with physical components

e The possibility of extending the gate to more than two inputs

e The basic properties of the binary operator such as commutativity and associativity, and

e The ability of the gate to implement Boolean functions alone or in conjunction with other gates.

Of the 16 functions defined in Table above, two are equal to a constant and four others are repeated
twice. There are only ten functions left to be considered as candidates for logic gates. Two, inhibition
and implication, are not commutative or associative and thus are impractical to use as standard logic
gates. The other eight: complement, transfer, AND, OR, NAND, NOR, exclusive-OR, and equivalence,
are used as standard gates in digital design.

The graphic symbols and truth tables of the eight gates are shown below:

Boolean Algebra and Logic Gates Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

Name Graphic Algebraic Truth
symbol function table

x y| F
x 0 0 0
AND F F=x o 1] o
Y 1 0|0
1 K1
x y| F
x 0 00
OR v —D— F Fwx+y o tl| 1
i 1 0|1
1 11
x| F
Inverter X Dc F Fe=yx 01
10
E|F
Buffer x ——D— F F=x ol 0
11
x y| F
X 0 o1
NAND F F=(xY 0 1|1
y errrre—
1 01
I 10
x y!|F
X 0 0|1
NOR :Do—F F=(x+y) 0 1|0
d 1 0|0
1 10
x y|F
Exclusive-OR :)D_ g F=w+xy 0 ? ¢
(XOR) =x By 1 01
1 110
x y|F
Exclusive-NOR x —— = o 0 0|1
Ve x D—F F = xy®+ x'y o 1o
equivalence 7 ~ 7 = X9y 1 00
1 111
Fig: listing of eight gates
Boolean Algebra and Logic Gates Page 10

By Bishnu Rawal
Downloaded from CSIT Tutor

Universal gates
A universal gate is a gate which can implement any Boolean function without need to use any
other gate type. The NAND and NOR gates are universal gates. In practice, this is advantageous
since NAND and NOR gates are economical and easier to fabricate and are the basic gates used
in all IC digital logic families.
1. NAND Gate is a Universal Gate
To prove that any Boolean function can be implemented using only NAND gates, we will
show that the AND, OR, and NOT operations can be performed using only these gates.
= |Implementing an Inverter Using only NAND Gate: All NAND input pins
connected to the input signal A gives an output A’.

ALAY=A' '
A j (A.A) , A : A

* |mplementing AND Using only NAND Gates: The AND is replaced by a NAND
gate with its output complemented by a NAND gate inverter.

A— (AB) A — AB
O = —

B— B —

= |Implementing OR Using only NAND Gates: The OR gate is replaced by a NAND
gate with all its inputs complemented by NAND gate inverters.

Sie
(A'B')'=A+B
D

o
EE

Thus, the NAND gate is a universal gate since it can implement the AND, OR and NOT
functions.
2. NOR Gate is a Universal Gate:

To prove that any Boolean function can not be implemented using only NOR gates, we
will show that the AND, OR, and NOT operations can be performed using only these
gates.

= Implementing neither an Inverter Using only NOR Gate: All NOR input pins

connect to the input signal A gives an output A’.

A | (A+A)=A , A j: A

* |mplementing OR Using only NOR Gates: The OR is replaced by a NOR gate with
its output complemented by a NOR gate inverter.

A (A+B)' A+B A DB
—
B B

Boolean Algebra and Logic Gates Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

= |mplementing AND Using only NOR Gates: The AND gate is replaced by a NOR
gate with all its inputs complemented by NOR gate inverters.

A A’
(A+BY)=AB | AB
—_—
B —

B B’

Thus, the NOR gate is a universal gate since it can implement the AND, OR and NOT functions.

Extending gates to multiple inputs

The gates shown in Fig above, except for the inverter and buffer, can be extended to have more than
two inputs. A gate can be extended to have multiple inputs if the binary operation it represents is
commutative and associative.

The AND and OR operations, defined in Boolean algebra, possess these two properties. For the
OR function, we have x +y =y + x commutative and (x +y) +z=x+ (y+z) =x+y +z associative,
which indicates that the gate inputs can be interchanged and that the OR function can be
extended to three or more variables.
The NAND and NOR functions are commutative and but not associative [xJ,(y { z) # (x { y) J 2]
xomdz=[x+v) +z]'=(x + 3z’ =xz' + vz’
xlyla=Ix+ 4+ =x(y+2)=x"y+x'z
Their gates can be extended to have more than two inputs, provided the definition of the

operation is slightly modified. We define the multiple NOR (or NAND) gate as a complemented
OR (or AND) gatei.e.x L yd z=(x+y+2z) and x Ty I z = (xyz)'.

x
x+yp+:2) b -——} (xyz)
Z

(a) Three-input NOR gate (b) Three-input NAND gate
The exclusive-OR and equivalence gates are both commutative and associative and can be
extended to more than two inputs

9,

._) F=x®ydbz

(a) Using 2-inpul gates

F=xgyo:

_— DD -
_——— T T e = o) e
e S o SRR e Y B Y

Ed et e

(b)Y 3-input gate (¢) Truth table

Fig: 3-input XOR gate

Boolean Algebra and Logic Gates Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

IC digital logic Families
Continuing the introduction of integrated Circuits (Chips) in unit 1, | will introduce u guys different logic
families along with their characteristics.
Digital logic families
Digital logic family refers to the specific circuit technology to which digital integrated circuits belong.
Family has its own basic electronic circuit upon which more complex digital circuits and components are
developed. The basic circuit in each technology is a NAND, NOR, or an inverter gate. The electronic
components used in the construction of the basic circuit are usually used as the name of the
technology. Different logic families have been introduced commercially. Some of most popular are:
= TTL (transistor-transistor logic): The TTL family evolved from a previous technology that used
diodes and transistors for the basic NAND gate. This technology was called DTL for diode-
transistor logic. Later the diodes were replaced by transistors to improve the circuit operation
and the name of the logic family was changed to TTL.
= ECL (emitter-coupled logic): Emitter-coupled logic (ECL) circuits provide the highest speed
among the integrated digital logic families. ECL is used in systems such as supercomputers and
signal processors, where high speed is essential. The transistors in ECL gates operate in a non-
saturated state, a condition that allows the achievement of propagation delays of 1 to 2
nanoseconds.
= MOS (metal-oxide semiconductor): The metal-oxide semiconductor (MOS) is a unipolar
transistor that depends upon the flow of only one type of carrier, which may be electrons (n-
channel) or holes (p-channel), this is in contrast to the bipolar transistor used in TTL and ECL
gates, where both carriers exist during normal operation. A p-channel MOS is referred to as
PMOS and an n-channel as NMOS. NMOS is the one that is commonly used in circuits with only
one type of MOS transistor.
= CMOS (complementary metal-oxide semiconductor): Complementary MOS (CMOS) technology
uses one PMOS and one NMOS transistor connected in a complementary fashion in all circuits.
The most important advantages of MOS over bipolar transistors are the high packing density of
circuits, a simpler processing technique during fabrication, and a more economical operation
because of the low power consumption.
= [IL (Integrated Injection Logic): Integrated injection logic (IIL, I°L, or I12L) is a class of digital circuit
technology built with multiple collector bipolar junction transistors (BJT). When introduced it
had speed comparable to TTL yet was almost as low power as CMOS, making it ideal for use in
VLSI (and larger) integrated circuits. Although the logic voltage levels are very close (High: 0.7V,
Low: 0.2V), I’L has high noise immunity because it operates by current instead of voltage.
Sometimes also known as Merged Transistor Logic.

Currently, silicon-based Complementary Metal Oxide Semiconductor (CMOS) technology dominates due
to its high circuit density, high performance, and low power consumption. Alternative technologies
based on Gallium Arsenide (GaAs) and Silicon Germanium (SiGe) are used selectively for very high speed
circuits.

Characteristics of digital logic families (Technology Parameters)

For each specific implementation technology, there are details that differ in their electronic circuit
design and circuit parameters. The most important parameters used to characterize an implementation
technology are:

Boolean Algebra and Logic Gates Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

1. Fan-in

For high-speed technologies, fan-in, the number of inputs to a gate, is often restricted on gate
primitives to no more than four or five. This is primarily due to electronic considerations related to
gate speed. To build gates with larger fan-in, interconnected gates with lower fan-in are used during
technology mapping. A mapping for a 7-input NAND gate is made up of two 4- input NANOs and an

inverter as shown in figure.

Fig: Implementation of a 7-input NAND Gate using NAND Gates with 4 or Fewer Inputs.

2. Propagation delay

The signals through a gate take a certain amount of time to propagate from the inputs to the
output. This interval of time is defined as the propagation delay of the gate. Propagation delay is
measured in nanoseconds (ns). 1 ns is equal to 10”° of a second. The signals that travel from the
inputs of a digital circuit to its outputs pass through a series of gates. The sum of the propagation
delays through the gates is the total delay of the circuit.

The average propagation delay time of a gate is calculated from the input and output waveforms as:

| \
=

LPHL LPLH

lpd = Max (tpHL. tpLu)

Fig: Measurement of propagation delay

e Delay is usually measured at the 50% point with respect to the H and L output voltage levels.
e High-to-low (tpy.) and low-to-high (tp4) output signal changes may have different propagation
delays.
e High-to-low (HL) and low-to-high (LH) transitions are defined with respect to the output, not the
input.
e An HL input transition causes:
o an LH output transition if the gate inverts and
o An HL output transition if the gate does not invert.

3. Fan-out

Fan-out specifies the number of standard loads driven by a gate output i.e. Fan-out is a measure of
the ability of a logic gate output to drive a number of inputs of other logic gates of the same type.
Maximum Fan-out for an output specifies the fan-out that the output can drive with out exceeding
its specified maximum transition time. Standard loads may be defined in a variety of ways
depending upon the technology. For example: the input to a specific inverter can have load equal to
1.0 standard load. If a gate drives six such inverters, then the fan-out is equal to 6.0 standard loads.

Boolean Algebra and Logic Gates Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

D

D2

D

b
e

Fig: AND gate above is attached to the inputs of four other components so has a fan out of 4.
4. Power Dissipation
Every electronic circuit requires a certain amount of power to operate. The power dissipation is a
parameter expressed in millwatts (mW) and represents the amount of power needed by the gate.
The number that represents this parameter does not include the power delivered from another
gate; rather, it represents the power delivered to the gate from the power supply. An IC with four
gates will require, from its power supply, four times the power dissipated in each gate.

The amount of power that is dissipated in a gate is calculated as:

Pp (Power Dissipation) = V¢ * Iec Where V.. =supply voltage and
l.c = current drawn by the circuit
The current drain from the power supply depends on the logic state of the gate. The current
drawn from the power supply when the output of the gate is in the high-voltage level is termed
Iccw- When the output is in the low-voltage level, the current is /. The average current is
fecu + Icor,
2
And used to calculate the average power dissipation as,
Pp(avg) = Icc(avg) X Ve
Example: A standard TTL NAND gate uses a supply voltage V.. of 5V and has current drains /¢y = 1
mA and I = 3 mA. The average current is (3 + 1)/2 = 2 mA. The average power dissipationis5x 2 =
10 mW. An IC that has four NAND gates dissipates a total of 10 x 4 = 40 mW. In a typical digital
system there will be many ICs, and the power required by each IC must be considered. The total
power dissipation in the system is the sum total of the power dissipated in all ICs.

I cc(an) =

5. Noise Margin
Undesirable or unwanted signals (e.g. voltages, currents etc) on the connecting wires between logic
circuits are referred to as noise. There are two types of noise to be considered:

e DC noise is caused by a drift in the voltage levels of a signal.

e AC noise is a random pulse that may be created by other switching signals.

Thus, noise is a term used to denote an undesirable signal that is superimposed upon the normal
operating signal. Noise margin is the maximum noise voltage added to an input signal of a digital circuit
that does not cause an undesirable change in the circuit output. The ability of circuits to operate reliably
in a noise environment is important in many applications. Noise margin is expressed in volts and
represents the maximum noise signal that can be tolerated by the gate.

Boolean Algebra and Logic Gates Page 15

By Bishnu Rawal
Downloaded from CSIT Tutor

,\ Ve Feg
| T e RN \
noise margin .
_ —_— Vi
i |
R
1 Low=gtate
RMOAE arpin
Voo — 1 \
o 1]
(a) Output voltage range (b) Input voltage range

In fig, Vo, is the maximum voltage that the output can be when in the low-level state. The circuit can
tolerate any noise signal that is less than the noise margin (V,, - V) because the input will recognize the
signal as being in the low-level state. Any signal greater than Vy, plus the noise-margin figure will send
the input voltage into the indeterminate range, which may cause an error in the output of the gate. In a
similar fashion, a negative-voltage noise greater than Vy, - Vi will send the input voltage into the
indeterminate range.

The parameters for the noise margin in a standard TTL NAND gate are Vo, =2.4V, V5, =04V, V=2V,
and V;, = 0.8 V. The high-state noise margin is 2.4 - 2 =0.4 V, and the low-state noise margin is 0.8 - 0.4 =
0.4 V. In this case, both values are the same.

Positive and Negative Logic

The binary signal at the inputs and outputs of any gate has one of two values, except during transition.
One signal value represents logic-1 and the other logic-0. So there is a possibility of two different
assignments of signal level to logic value, as shown in Fig.

Logic Signal Logic Signal
value value value value
1 H 0 H
0 L 1 L
(a) Positive logic (b) Negative logic

e Choosing the high-level H to represent logic-1 defines a positive logic system.

e Choosing the low-level L to represent logic-1 defines a negative logic system.

e The terms positive and negative are somewhat misleading since both signals may be positive or
both may be negative. It is not the actual signal values that determine the type of logic, but
rather the assignment of logic values to the relative amplitudes of the two signal levels.

v ¥ z v A £

0 0 0 X . . ! x = ~ .
N . : roo RS :
0 !
|

0 o 1|

_—-

1 0o 0 0
———————
(¢) Truth table for (dy Pesitive logic AND gate (e} Truth table for {f) Negative logic OR gate
pasitive logic negative logic

Fig: Demonstration of Positive and negative logic

Boolean Algebra and Logic Gates Page 16

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 3
Simplification of Boolean functions

Canonical and standard forms
We can write Boolean expressions in many ways, but some ways are more useful than others. We will
look first at the “term” types, made up of “literals”.

Minterms

A minterm is a special product (ANDing of terms) of literals, in which each input variable
appears exactly once.
A function with n variables has 2" minterms (since each variable can appear complemented or
not)
A three-variable function, such as f(x, y, z), has 2® = 8 minterms:

Xy'zZ xyz xXyzZ Xyz

Xy’ xy'z xyz’ Xyz
Each minterm is true for exactly one combination of inputs:

Maxterms

A maxterm is a sum (or ORing of terms) of literals, in which each input variable appears exactly
once.
A function with n variables has 2" maxterms
The maxterms for a three-variable function f(x, y, z):
X+y +27 X+y +1z X+y+27 X+y+z
X+y +7 X+y +z X+y+7 X+y+z
Each maxterm is false for exactly one combination of inputs:

Minterms Maxterms
X ¥ z Term Designation Term Designation
0 0 0 x'v'z! Mo x+v+z Mo
0 0] x'y'z n, x+yv+z M,
0 1 0 x'vz’ n; x+y' 4+ M,
0 1 1 x'yz m; x+ v +z M,
1 0 0 xy'z’ ma x'+y+z M.
1 0 l xy'z M 2ty Ms
1 ! 0 xyvz' e x' =y T M
1 I | xyz m; x'+y + M;

Table: Minterms and Maxterms for 3 Binary Variables with their symbolic shorthand

Hey! Each maxterm is the complement of its corresponding minterm and vice versa (viz. mg = Mo', M, =
m, etc.).

Simplification of Boolean Funtions Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

A Boolean function may be expressed algebraically (SOP or POS form) from a given truth table by:
= Forming a minterm for each combination of the variables that produces a 1 in the function, and
then taking the OR of all those terms.
* Forming a maxterm for each combination of the variables that produces a 0 in the function, and
then taking the AND of all those maxterms.

Canonical forms

Boolean functions expressed as a sum of min terms or product of maxterms are said to be in canonical
form. These complementary techniques are describes below. Canonical form is not efficient
representation but sometimes useful in analysis and design. In an expression in canonical form, every
variable appears in every term.

Sum of Minterms (Sum of Products or SOP)

We have seen, one can obtain 2" distinct minterms form n binary input variables and that any Boolean
function can be expressed as a sum of minterms. The minterms whose sum defines the Boolean function
are those that give the 1's of the function in a truth table. It is sometimes convenient to express the
Boolean function in its sum of minterms form. If not in this form, it can be made so by first expanding
the expression into a sum of AND terms. Each term is then inspected to see if it contains all the
variables. If it misses one or more variables, it is ANDed with an expression such as x + x!, where x is one
of the missing variables.

Question: Express the Boolean function in a sum of minterms.
Solution: The function has three variables A, B, and C.
= The first term A is missing two variables; therefore:
A=A(B+B')=AB+AB' [B is missing variable]
This is still missing one variable C, so A= AB(C + C') + AB'(C + C') = ABC + ABC' + AB'C + AB'C'
= The second term B'C is missing one variable: B'C=B'C(A+ A')=AB'C+ A'B'C
= Combing all terms, we have F = A+B'C = ABC + ABC' + AB'C + AB'C' + AB'C+ A'B'C
= But AB'C appears twice, and according to THEOREM 1 of Boolean algebra x + x = x, it is possible
to remove one of them. Rearranging the minterms in ascending order, we finally obtain:
F=A'B'C+AB'C'+ AB'C+ ABC' + ABC
=my+ my+ms+mg+my
Shorthand notation,
F(A,B,C) =2.(1,4,5,6,7)
The summation symbol)’ stands for the ORing of terms: the numbers following it are the minterms of the
function.
An alternate procedure for deriving the minterms of a Boolean function is to obtain the truth table of

the function directly from the algebraic expression and then read the minterms from the truth table.

Truth Tablefor F= A + B'C

A g C F
0 o o 0 ,
0 0 | l Truth table for F= A + B'C, from the truth
0 1 0 0 table, we can then read the five minterms
? (I) (]} ? of the functionto be 1, 4, 5, 6, and 7.
1 0 | 1
i 1 0 I
1 1 1 i
Simplification of Boolean Funtions Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

Product of Maxterms (Product of Sums or POS)

Each of the 22" functions of n binary variables can be also expressed as a product of maxterms. To
express the Boolean function as a product of maxterms, it must first be brought into a form of OR terms.
This may be done by using the distributive law, x + yz = (x + y)(x + z). Then any missing variable x in each
OR term is ORed with xx'. This procedure is clarified by the following example:

Question: Express the Boolean function F = xy + x'z in a product of maxterm form.
Solution:
= First, con vert the function into OR terms using the distributive law:
F=xy+x'z=(xy+x')(xy +2)
=(x+x)y+x')(x+2z)(y+2)
=(x"+y)(x+2z)(y +2)
= The function has three variables: x, y, and z. Each OR term is missing one variable;
therefore:
X'+y=x'+y+zz'=(xX'+y+z)(x'+y+2z")
X+zZ=X+z+yy' =(X+y+z)(x+y' +2)
y+z=y+z+xx'=(x+y+z)(x'+y+2)
= Combing all maxterms and removing repeated terms:
F=(x+y+z)(x+y' +2)(x' +y+2)(x' +y+2z")
= MoM,M4Ms
Shorthand notation:
F(x v, 2)=11(0,2,4,5)
The product symbol [] denotes the ANDing of maxterms; the numbers are the
maxterms of the function.

Conversion between canonical forms
The complement of a function expressed as the sum of minterms equals the sum of minterms missing
from the original function.

For example: Consider the function, F(4,B,C) = Y(1,4,5,6,7)

Its complement can be expressed as: F'(4, B,C) = X.(0,2,3) = my + m, + ms

Now, if we take the complement of F' by DeMorgan's theorem, we obtain F in a different form:
F(A,B,C) = (my + my + m3) = my.my.m3 = My. My. M5 = [1(0,2,3)

The last conversion follows from the definition of min terms and maxterms that m;’ = M;

General Procedure: To convert from one canonical form to another, interchange the symbols)’ and []
and list those numbers missing from the original form. In order to find the missing terms, one must
realize that the total number of minterms or maxterms is 2" (numbered as 0 to 2""), where n is the
number of binary variables in the function.

Consider a function, F = xy + x'z. First, we derive the truth table of the function

Simplification of Boolean Funtions Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

i

¥ z F
0 0 0 The minterms of the function are read from the truth tem
0 1 1 be 1, 3, 6, and 7. The function expressed in sum of minterms
1 0 0 s
; | | F(x,y,z) =X(1,3,6,7)
e Since there are a total of eight minterms or maxterms in a

0 0 0 . . . o

function of three variables, we determine the missing terms
0 I 0 to be 0, 2, 4, and 5. The function expressed in product of
1 0 ! maxterm is
1 1 1

F(x,y,z) =T11(0,2,4,5) /

Standard Forms

This is another way to express Boolean functions. In this configuration, the terms that form the
function may contain one, two, or any number of literals. There are two types of standard
forms: the sum of products and product of sums.

The sum of products is a Boolean expression containing AND terms, called product terms, of one

or more literals each. The sum denotes the ORing of these terms.

Example: F; = y' + xy + x'yz’, the expression has three product terms of one, two, and three
literals each, respectively. Their sum is in effect an OR operation.

A product of sums is a Boolean expression containing OR terms, called sum terms. Each term
may have any number of literals. The product denotes the ANDing of these terms. An example
of a function expressed in product of sums is F; = x(y' + z)(x' + y + z' + w), this expression has
three sum terms of one, two, and four literals each, respectively. The product is an AND
operation.

Function can also be in non-standard form: F; = (AB + CD) (A'B' + CD') is neither in SOP nor in

POS forms. It can be changed to a standard form by using the distributive law as F3 = A'B'CD +
ABC'D'.

Simplifying Logic Circuits (Boolean functions): Two methods

First obtain one expression for the circuit, then try to simplify. Example: In diagram below, (a) can be
simplified to (b) using one of following two methods:

1. Algebraic method (use Boolean algebra theorems)
2. Karnaugh mapping method (systematic, step-by-step approach)
A= A+ BC -
B ‘; 80 jﬂ B(R + BC)
’ In
(&)
D
- p— x=ABC
C =
C
(b}
Simplification of Boolean Funtions Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

METHOD 1: Minimization by Boolean algebra
= Make use of relationships and theorems to simplify Boolean Expressions
= Perform algebraic manipulation resulting in a complexity reduction.
= This method relies on your algebraic skill
= 3 things totry:
o Grouping
A+AB+BC
A(1+B) +BC
A+BC [since 1+ B =1]
o Multiplication by redundant variables
#+ Multiplying by terms of the form A + A’ does not alter the logic
#+ Such multiplications by a variable missing from a term may enable minimization
Example:
AB+ AC + BC = AB(C+C)+ AC + BC
= ABC+ ABC + AC + BC
=BC(1+ A)+ AC (1+ B)
=BC+ AC
o Application of DeMorgan’s theorem
#+ Expressions containing several inversions stacked one upon the other often are
simplified by using DeMorgan’s law which unwraps multiple inversions.
+ Example:

ABC+ACD+BC=(A+B+C)+(A+C+D)+BC
=(A+B+C+D)+BC
=(A+B+C+D)
= ABCD

Question (Logic Design): Design a logic circuit having 3 inputs, A, B, C will have its output HIGH only
when a majority of the inputs are HIGH.

Solution:

Step 1 Set up the truth table: K,

Step 2 Write minterm (AND term) for each case where the output is 1. A B C x
0 0 0 0
Step 3 Write the SOP from the output. 0 0 1 0
v = ABC + ABC + ABC + ABC 01 0 0
0 1 1 1 —4BC
Step 4 Simplify the output expression 1 0 0 0
x= ABC + ABC + ABC + ABC 1.0 1 1 _ i3
X = ABC + ABC + ABC +|4ABC 1.1 0 1 _apc
=BC(A+A)+AC(B+B)+ AB(C +C) T 11 1 4B
=BC + AC + AB
Simplification of Boolean Funtions Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

Step 5 Implement the circuit.

B®
_ BC
A®
J % = BC + AC + AB
AB

METHOD 2: Minimization by K-map (Karnaugh map)
Algebraic minimization of Boolean functions is rather awkward because it lacks specific rules to predict
each succeeding step in the manipulative process. The map method provides a simple straightforward
procedure for minimizing Boolean functions. This method may be regarded as a pictorial form of a truth
table. The map method, first proposed by Veitch and modified by Karnaugh, is also known as the "Veitch
diagram" or the "Karnaugh map."

= The k-map is a diagram made up of grid of squares.

= Each square represents one minterm.

= The minterms are ordered according to Gray code (only one variable changes between

adjacent squares).

= Squares on edges are considered adjacent to squares on opposite edges.

= Karnaugh maps become clumsier to use with more than 4 variables.
In fact, the map presents a visual diagram of all possible ways a function may be expressed in a standard
form. By recognizing various patterns, the user can derive alternative algebraic expressions for the same
function, from which he can select the simplest one. We shall assume that the simplest algebraic
expression is anyone in a sum of products or product of sums that has a minimum number of literals.
(This expression is not necessarily unique)

Two variable maps
There are four minterms for a Boolean function with two variables. Hence, the two-variable map
consists of four squares, one for each minterm, as shown in Figure:

my | m, ol XY | XY 0 0 1
m ms 1| XY | XY ! ! 1 1 !
(a) (b) (a) XY (MX+Y
Fig: Two-variable map Fig: Representation of functions in the map

Three variable maps

There are eight minterms for three binary variables. Therefore, a three-variable map consists of eight
squares, as shown in Figure. The map drawn in part (b) is marked with binary numbers for each row and
each column to show the binary values of the minterms.

Hey! | will explain the process of simplification through examples.

Simplification of Boolean Funtions Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

my, | m my | m 0IXYZIXYZIXYZIXYZ

me [mg [my [om, X | IXYZ|XYZ|XYZ|XYZ

Fig: Three-variable map

Question: Simplify the Boolean function
F(X,Y,Z) =3(2,3,4,5).
Solution:
Step 1: First, a 1 is marked in each minterm that represents the function. This is shown in Figure,
where the squares for minterms 010, 011, 100, and 101 are marked with 1's. For convenience,

all of the remaining squares for which the function has value 0 are left blank rather than
entering the O's.

7 Y

Y -
\\\) ol 11 I XY

‘l‘_,:_j

NY

Step 2: Explore collections of squares on the map representing product terms to be considered
for the simplified expression. We call such objects rectangles. Rectangles that correspond to
product terms are restricted to contain numbers of squares that are powers of 2, such as 1,
2(pair), 4(quad), 8(octet) ... Goal is to find the fewest such rectangles that include all of the
minterms marked with 1's. This will give the fewest product terms.

Z

Step 3: Sum up each rectangles (it may be pair, quad etc representing term) eliminating the
variable that changes in value (or keeping intact the variables which have same value)
throughout the rectangle.

From figure, logical sum of the corresponding two product terms gives the optimized expression
for F:
F = X'Y+XY’

Point to understand

YZ , Y _
\\ 00 o1 1110 qb Minterm adjacencies are circular in nature.

j This figure shows Three-Variable Map in Flat

K. X7 'ﬁ
0 | 1 2

“f”]] : \n and on a Cylinder to show adjacent squares.

SBR[57

Simplification of Boolean Funtions Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

Question: Simplify the following two Boolean functions:
F(X,Y,Z) =Y(3,4,6,7)
G(X,Y,Z) =2(0,2,4,5,6)

Solution: The map for F and G are given below:

YZ - ‘ YZ _
\\ 0n 0l 1 10 \\ o0 01 11 10

7.4 Z
Writing the simplified expression for both functions:
F=YZ+XZ and G = Z’+XY’

Hey! On occasion, there are alternative ways of combining squares to produce equally optimized
expressions. It’s upon your skill to use the easy and efficient strategy.

Four variable maps

The map for Boolean functions of four binary variables is shown in Fig below. In (a) are listed the 16
minterms and the squares assigned to each. In (b) the map is redrawn to show the relationship with the
four variables.

¥z S G
wirh_00 01 11 10
my | my my My 00wy pwix'y'z|w'a’ vz [w' X' yz’
me|me | my !l omg otlwxyz|wxy'z| wxyz |wxyz
X
miz ml3 m15 mM 11|wxy's’ | wxy'z] wxyz | wayz
w
mg | mg §omy | my, 10w’y 2w’y wx'vz lwafyr

e —————

(a) (b) 4
The map minimization of four-variable Boolean functions is similar to the method used to minimize
three-variable functions. Adjacent squares are defined to be squares next to each other. In addition, the
map is considered to lie on a surface with the top and bottom edges, as well as the right and left edges,
touching each other to form adjacent squares. For example, my and m, form adjacent squares, as do m;
and my;.

Question: Simplify the Boolean function
Fw,x,y,2z) =3(0,1,2,4,5,6,8,9,12,13,14)
Solution:
Since the function has four variables, a four-variable map must be used. Map representation is
shown below:

Simplification of Boolean Funtions Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

00 0L "1t 10

W.T__ —
0011 1 1
o1 1 1
x

i 1 1
W

100 1 1

— e
2

The simplified function is: F=y' + w'z' + xz'
Question: Simplify the Boolean function
F=A'B'C'+B'CD'+A'BCD' + AB'C'
Solution:

First try just to reduce the standard form function into SOP form and then mark 1 for each
minterm in the map.

F=A'B'C'+B'CD'+ A'BCD' + AB'C'
=A'B'C'(D+D’') + B'CD(A+A') + A'BCD' + AB'C'(D+D’)
=A'B'C'D+ A'B'C'D' + AB'CD+A'B'CD + A'BCD' + AB'C'D+ AB'C'D'

This function also has 4 variables, so the area in the map covered by this function consists of the
squares marked with 1's in following Fig.

CD)
A“\ 00 o 11 10

(0 | | 1 I || 1 |
01 | | I

o

D
Optimized function thusis: F=B'D'+ B'C'+ A'CD'

.

Don’t care Conditions

The logical sum of the minterms associated with a Boolean function specifies the conditions under which
the function is equal to 1. The function is equal to O for the rest of the min terms. This assumes that all
the combinations of the values for the variables of the function are valid. In practice, there are some
applications where the function is not specified for certain combinations of the variables.

Example: four-bit binary code for the decimal digits has six combinations that are not used and
consequently are considered as unspecified.

Simplification of Boolean Funtions Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

In most applications, we simply don't care what value is assumed by the function for the unspecified
minterms. For this reason, it is customary to call the unspecified minterms of a function don't-care
conditions. These don't-care conditions can be used on a map to provide further simplification of the

Boolean expression.

Don't-care minterm is a combination of variables whose logical value is not specified. To distinguish the
don't-care condition from 1's and 0's, an X is used. Thus, an X inside a square in the map indicates that
we don't care whether the value of 0 or 1 is assigned to F for the particular min term.

When choosing adjacent squares to simplify the function in a map, the don't-care minterms may be
assumed to be either 0 or 1. When simplifying the function, we can choose to include each don't-care
minterm with either the 1's or the 0's, depending on which combination gives the simplest expression.

Question: Simplify the Boolean function

Fw,x,y,2z) = %(1,3,7,11,15)

that has the don't-care conditions

Solution:

dw,x,y,z) =(0,2,5)

The map simplification is shown below. The minterms of F are marked by 1's, those of d are marked by
X's, and the remaining squares are filled with 0's.

y y
yz A yz A
00 01 11 10 00 01 11 10
wx wWx
o0 || x 1 1] X 0| X 1 1] X
o1}y o X 1 0 o1} o X 1 0
x
1mj o 0 1 0 1| o 0 1 0
w W
o] o 0 1 0 10| o 0 1 0
—_ |
F4 z

simplified function

In part (b), don't-care minterm 5 is included with the 1's and the simplified function now is

@) F=yz+wx'
Fig: Map simplification with don’t care conditions
In part (a) of the diagram, don't-care minterms 0 and 2 are included with the 1's, which results in the

F=yz+w'x

F=yz+w'z
Either one of the above expressions satisfies the conditions stated for this example.

Product of sum simplification
The optimized Boolean functions derived from the maps in all of the previous examples were expressed
in sum-of-products (SOP) form. With only minor modification, the product-of-sums form can be

obtained.

(b) F=yz+ wz

Simplification of Boolean Funtions

By Bishnu Rawal
Downloaded from CSIT Tutor

Page 10

Procedure:
The 1's placed in the squares of the map represent the minterms of the function. The minterms not

included in the function belong to the complement of the function. From this, we see that the
complement of a function is represented in the map by the squares not marked by 1's. If we mark the
empty squares with 0's and combine them into valid rectangles, we obtain an optimized expression of
the complement of the function (F’). We then take the complement of F to obtain the function F as a
product of sums.

Question: Simplify the following Boolean function F(4,B,C,D) =3.(0,1,2,5,8,9,10) in
(a) Sum of products (SOP) and
(b) Product of sums (POS).

Solution:
The 1's marked in the map below represent all the minterms of the function. The squares

marked with O's represent the minterms not included in F and, therefore, denote F.
(a) Combining the squares with 1's gives the simplified function in sum of products:

F=BD'+B'C'+A'CD

CD
.\B\ 0o 0l 11 10
oy 1 1 ﬂ: 1

ary o] 0 0

o 0o [lof]]lo]

||l) | 1 0 |

A

D
(b) If the squares marked with 0's are combined, as shown in the diagram, we obtain the
simplified complemented function:
F'=AB+ CD + BD'
Applying DeMorgan's theorem (by taking the dual and complementing each literal as described
in unit2), we obtain the simplified function in product of sums:
F=(A"+B')(C'+D')(B'+ D)

The Gate implementation of the simplified expressions obtained above in (a) and (b):

e 3 >— s >—

() F=8D+BC +ACD (b) F={A"=RBY("+D)VH +D)

Simplification of Boolean Funtions Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

NAND and NOR implementation

Digital circuits are more frequently constructed with NAND or NOR gates than with AND and OR gates.
NAND and NOR gates are easier to fabricate with electronic components and are the basic gates used in
all IC digital logic families. The procedure for two-level implementation is presented in this section.

NAND and NOR conversions (from AND, OR and NOT implemented Boolean functions)
Because of the prominence of NAND and NOR gates in the design of digital circuits, rules and procedures
have been developed for the conversion from Boolean functions given in terms of AND, OR, and NOT
into equivalent NAND and NOR logic diagrams.
To facilitate the conversion to NAND and NOR logic, there are two other graphic symbols for these
gates.

(a) NAND gate

Two equivalent symbols for the NAND gate are shown in diagram below:

| X
Y — F=(xyzy) — F=x"4+y 4+ =(xvz)

AND-invert Invert-OR

"

Fig: Two graphic symbols for NAND gate
(b) NOR gate

X —d
F=(x+ytz) ' —= Feahss ety
7 ——Q

OR-invert Invert-AND

W

Fig: Two graphic symbols for NOR gate
(c) Inverter

i —>o—x _ﬁ} y AD‘F v

Buffer-invert AND-invert OR-invert

Fig: Three graphic symbols for NOT gate

NAND implementation

The implementation of a Boolean function with NAND gates requires that the function be simplified in
the sum of products form. To see the relationship between a sum of products expression and its
equivalent NAND implementation, consider the logic diagrams of Fig below. All three diagrams are
equivalent and implement the function: F=AB + CD + E

A —
F—
FoS
D— L_)’_F
E-—
(a) AND-OR (b) NAND-NAND (¢} NAND-NAND
Simplification of Boolean Funtions Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

The rule for obtaining the NAND logic diagram from a Boolean function is as follows:
First method:

(a) Simplify the function and express it in sum of products.

(b) Draw a NAND gate for each product term of the function that has at least two literals. The
inputs to each NAND gate are the literals of the term. This constitutes a group of first-level
gates.

(c) Draw a single NAND gate (using the AND-invert or invert-OR graphic symbol) in the second
level, with inputs coming from outputs of first-level gates.

(d) A term with a single literal requires an inverter in the first level or may be complemented
and applied as an input to the second-level NAND gate.

Second method:

If we combine the 0's in a map, we obtain the simplified expression of the complement of the function in
sum of products. The complement of the function can then be implemented with two levels of NAND
gates using the rules stated above. If the normal output is desired, it would be necessary to insert a one-
input NAND or inverter gate. There are occasions where the designer may want to generate the
complement of the function; so this second method may be preferable.

Question: Implement the following function with NAND gates:
F(x,y,z) =%(0,6)
Solution:
The first step is to simplify the function in sum of products form. This is attempted with
the map. There are only two 1's in the map, and they can’t be combined.

vz Y
y —t——
x 00 01 11 10
0] 1 0 0 0 F=x'y'z' + xy2'
F=x'y+xy+z
X {l 0 0 0 1
4
Fig: Map simplification in SOP

METHOD1:
Two-level NAND implementation is shown below:

X'—-I_{

»

2=

L—1
O

N B

=D

oI

Fig: F=x'y'z' +xyz'

METHOD2:

Next we try to simplify the complement of the function in sum of products. This is done by
combining the 0's in the map:

Simplification of Boolean Funtions Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

F'=x'y+xy'+z
The two-level NAND gate for generating F'is shown below:

D
D

oJs]s

Fig: F'=x'y+xy'+z

If output F is required, it is necessary to add a one: input NAND gate to invert the function. This
gives a three-level implementation.

NOR Implementation

The NOR function is the dual of the NAND function. For this reason, all procedures and rules for NOR
logic are the duals of the corresponding procedures and rules developed for NAND logic. The
implementation of a Boolean function with NOR gates requires that the function be simplified in product
of sums form. A product of sums expression specifies a group of OR gates for the sum terms, followed
by an AND gate to produce the product. The transformation from the OR-AND to the NOR-NOR diagram
is depicted in Fig below. It is similar to the NAND transformation discussed previously, except that now
we use the product of sums expression.

A

)

o
0%

(a} OR-AND (b) NOR-NOR {c) NOR-NOR
Fig: Three ways to implement F= (A + B) (C+ D)E

All the rules for NOR implementation are similar to NAND except that these are duals, so | won’t
describe them here.

Question: Implement the following function with NOR gates:
F(x,y,z) = %(0,6)
Solution:
Map is drawn in previous question.

Simplification of Boolean Funtions Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

METHOD1

First, combine the 0's in the map to obtain

F'=x'y+xy'+z this is the complement of the

function in sum of products. Complement F'to

obtain the simplified function in product of

sums as required for NOR implementation:
F=(x+y')(x'+y) 2

METHOD2
A second implementation is possible from the
complement of the function in product
of sums. For this case, first combine the 1's in
the map to obtain
F=x'y'z" +xyz'
Complement this function to obtain the
complement of the function in product of
sums as required for NOR implementation:
F'=(x+y+z)(x'+y'+2)

X

x!
ym F ¥ F
Z
' F'
>
z' ——-' Y
i z
ummary of NAND and NOR implementation
Number
of
Function to Standard form How to Implement levels
Case simplify to use derive with toF
(a) F Sum of products Combine 1’s in map NAND 2
) F' Sum of products Combine 0’s in map NAND 3
(c) F Product of sums Complement £’ in (b) NOR 2
d) F’ Product of sums Complement F in (a) NOR 3
Simplification of Boolean Funtions Page 15

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 4
Combinational Logic

Introduction

In digital circuit theory, combinational logic is a type of digital logic which is implemented by Boolean
circuits, where the output is a pure function of the present input only. This is in contrast to sequential
logic, in which the output depends not only on the present input but also on the history of the input. In
other words, sequential logic has memory while combinational logic does not.

Combinational Circuit
These are the circuit gates employing combinational logic.

e A combinational circuit consists of n input variables, logic gates, and m output variables. The
logic gates accept signals from the inputs and generate signals to the outputs.

e For n input variables, there are 2" possible combinations of binary input values. For each
possible input combination, there is one and only one possible output combination. A
combinational circuit can be described by m Boolean functions, one for each output variable.
Each output function is expressed in terms of the n input variables.

Obviously, both input and output data are represented by binary signals, i.e., logic-1 and the other logic-
0. The n input binary variables come from an external source; the m output variables go to an external
destination. A block diagram of a combinational circuit is shown in Fig:

———)] ———»—

n input —T™ Combinational | . . output

variables Logic | variables
Circuit L

Fig: Block diagram of combinational circuit

Design procedure
The design of combinational circuits starts from the verbal outline of the problem and ends in a logic
circuit diagram or a set of Boolean functions from which the logic diagram can be easily obtained. The
procedure involves the following steps:
1. Specification
= Write a specification for the circuit if one is not already available
2. Formulation
= Derive a truth table or initial Boolean equations that define the required relationships
between the inputs and outputs, if not in the specification.
= Apply hierarchical design if appropriate
3. Optimization
= Apply 2-level and multiple-level optimization
= Draw a logic diagram for the resulting circuit using ANDs, ORs, and inverters
4. Technology Mapping
= Map the logic diagram to the implementation technology selected
5. Verification
= Verify the correctness of the final design manually or using simulation

Combinational Logic Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

In simple words, we can list out the design procedure of combinational circuits as:

1. The problem is stated.
2. The number of available input variables and required output variables is determined.
3. Theinput and output variables are assigned letter symbols.
4. The truth table that defines the required relationships between inputs and outputs is derived.
5. The simplified Boolean function for each output is obtained.
6. The logic diagram is drawn.
Adders

Digital computers perform a variety of information-processing tasks. Among the basic functions
encountered are the various arithmetic operations. The most basic arithmetic operation, no doubt, is
the addition of two binary digits.

Half-Adder

A combinational circuit that performs the addition of two bits is called a half-adder.

Circuit needs two inputs and two outputs. The input variables designate the augend (x) and
addend (y) bits; the output variables produce the sum (S) and carry (C).

Now we formulate a Truth table to exactly identify the function of half-adder.

>

—_— 0 D
O o — O ‘-nl

The simplified Boolean functions for the two outputs can be obtained directly from the truth
table. The simplified sum of products expressions are:

S=x'y +xy'

C=xy

Implementation:

% —1
¥y —

S
x" ~—
y —
X) c
y—1_/

(a) S=xy’ +x'y
C=xy

Combinational Logic Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

Other realizations and implementations of Half-adders are:

y' y —
g
X —— \ x — N
y — J < y '—|L_ J
(b) S=(x+y)x"+3")) §=(C+xy"Y
C=xy C=xy

M) S [)—-«

(d) S=(x+nix’+y" (¢) S=xey
C=(x' +yY C=xy

Full-Adder

A full-adder is a combinational circuit that forms the arithmetic sum of three input bits.

It consists of three inputs and two outputs. Two of the input variables, denoted by x and y,
represent the two significant bits to be added. The third input, z, represents the carry from the
previous lower significant position.

Truth table formulation:

X vy z c s

0O 0 0 0 0 The S output is equal to 1 when only one
0 © 1 0 1 input is equal to 1 or when all three
o 1 0 0 1 inputs are equal to 1. The C output has a
? (l) (i} (]) (l) carry of 1 if two or three inputs are equal
1 0 1 1 0 tol.

1 1 0 1 0

I 1 1 1 1

The input-output logical relationship of the full-adder circuit may be expressed in two Boolean
functions, one for each output variable. Each output Boolean function requires a unique map for
its simplification (maps are not necessary; you guys can use algebraic method for simplification).
Simplified expression in sum of products can be obtained as:

Combinational Logic Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

00 ol 110 L 00 01 T 10
0 ! 1 0 [1
‘ — .f'i
rel 1 1 rql []]L]J 1
S=x'y'z+x'yz' + xy'z' + xyz C=xy+xz+yz

Implementation:

x]

z‘—(
X —
¥y —

x .
2
Fig: Implementation of a full-adder in sum of products.

A full-adder can be implemented with two half-adders and one OR gate.
x
¥

s

D?D_C

Fig: Implementation of a full-adder with two half-adders and an OR gate

i

z

Here, The S output from the second half-adder is the exclusive-OR of z and the output of the
first half-adder, giving:
S =z (xDy)

=2'(xy' + x'y) + z(xy' + x'y)' C =zl l@ y') XY
- Z‘(Xy' + le) + Z(Xy + lel) - Z(Xy +X y) + Xy
1,1 1 1 1w, = Xylz + X'yz + xy
=xy'z' + x'yz' + xyz + x'y'z

Subtractors
The subtraction of two binary numbers may be accomplished by taking the complement of the
subtrahend and adding it to the minuend. By this method, the subtraction operation becomes an

Combinational Logic Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

addition operation requiring full-adders for its machine implementation. It is possible to implement
subtraction with logic circuits in a direct manner, as done with paper and pencil. By this method, each
subtrahend bit of the number is subtracted from its corresponding significant minuend bit to form a
difference bit. If the minuend bit is smaller than the subtrahend bit, a 1 is borrowed from the next
significant position. Just as there are half- and full-adders, there are half- and full-subtractors.

Half-Subtractor
e A half-subtractor is a combinational circuit that subtracts two bits and produces their difference
bit.
e Denoting minuend bit by x and the subtrahend bit by y. To perform x - y, we have to check the
relative magnitudes of x and y:
o If x>y, we have three possibilities:0-0=0,1-0=1,and1-1=0.
o Ifx<y, wehave0-1,anditis necessary to borrow a 1 from the next higher stage.
e The half-subtractor needs two outputs, difference (D) and borrow (B).
e The truth table for the input-output relationships of a half-subtractor can now be derived as

follows:
x ¥y | 8 D
The output borrow BisaOaslongasx2y. Itisa
0 0 0 0 1forx=0andy=1.The D is the resul
0 | | 1 orx=0andy=1. The D output is the result
10 0 I of the arithmetic operation 2B + x - y.
| S 0 0

The Boolean functions for the two outputs of the half-subtractor are derived directly from the
truth table:
D =x'y + xy'
B=x'y
e Implementation for Half-subtractor is similar to Half-adder except the fact that x input of B is
inverted. (Here, D is analogous to S and B is similar to C of half-adder circuit). Try it out, | don’t
like redundancy... ©

Full-Subtractor
e A full-subtractor is a combinational circuit that performs a subtraction between two bits, taking
into account that a 1 may have been borrowed by a lower significant stage.
e This circuit has three inputs and two outputs. The three inputs, x, y, and z, denote the minuend,
subtrahend, and previous borrow, respectively. The two outputs, D and B, represent the
difference and output-borrow, respectively.

e Truth-table and output-function formulation:

Combinational Logic Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

me 1's and O's for the output variables are determinem

from the subtraction of x - y - z.
X Y Z B8 D = The combinations having input borrow z = 0 reduce to the
same four conditions of the half-adder.
0 0 0 0 0 . Forx=0,y=0,and z =1, we have to borrow a 1 from the
0 0 1 1 1 next stage, which makes B =1 and adds 2 to x. Since 2 -0 -
0 1 0 1 1 1=1,D=1.
0 1 1 1 0 = Forx=0andyz=11, we need to borrow again, making B =
1 0 0 0 1 landx=2.Since2-1-1=0,D=0.
| 0 1 0 0 * Forx=1andyz=01, we have x - y - z= 0, which makes B =
1 1 0 0 0 0and D=0.
1 1 1 1 1 = Finally, forx=1, y=1, z=1l, we have to borrow 1, making B

=landx=3,and3-1-1=1, making D=1.

The simplified Boolean functions for the two outputs of the full-subtractor are derived in the

maps:
vz Y Y
—_— —_
L 00 01 1110 (00 01 " 11 10
0 1 1 0 I_J 1] i
{ |
X< 1 i x J 1 _IJ

- . —~———
D=x'y'z+x'yz' +xy'z' + xyz B=x'y+x'z+yz

= Circuit implementations are same as Full-adder except B output (analogous to C) is little
different. (Don’t worry! ladies and gentlemen, we will discuss it in class...)

Code Conversion

= The availability of a large variety of codes for the same discrete elements of information results
in the use of different codes by different digital systems. It is sometimes necessary to use the
output of one system as the input to another. A conversion circuit must be inserted between
the two systems if each uses different codes for the same information. Thus, a code converter is
a circuit that makes the two systems compatible even though each uses a different binary code.

= To convert from binary code A to binary code B, code converter has input lines supplying the bit
combination of elements as specified by code A and the output lines of the converter generating
the corresponding bit combination of code B. A Code converter (combinational circuit) performs
this transformation by means of logic gates.

= The design procedure of code converters will be illustrated by means of a specific example of
conversion from the BCD to the excess-3 code. | will describe 5-step design procedure of this
code converter so that you guys will be able to understand how practical combinational circuits
are designed.

Combinational Logic Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

Design example: BCD to Excess-3 code converter

1. Specification
= Transforms BCD code for the decimal digits to Excess-3 code for the decimal digits
= BCD code words for digits 0 through 9: 4-bit patterns 0000 to 1001, respectively.
= Excess-3 code words for digits 0 through 9: 4-bit patterns consisting of 3 (binary 0011)
added to each BCD code word
* |mplementation:
o multiple-level circuit
2. Formulation
= Conversion of 4-bit codes can be most easily formulated by a truth table
= Variables- BCD: A, B, C,D
= Variables- Excess-3: W, X, Y, Z
= Don’t Cares: BCD 1010 to 1111

Decimal Input Output
Digit BCD Excess-3

A B C D w X Y Z \

Note that the four BCD
0 0 0 0 0 o 0 1 1 input variables may have
| 0o 0 0 1 0o 1 0 0 . L
5 0 0 1 0 o 1 0 1 16 bit combinations, but
3 0o 0 1 1 0 1 1 0 only 10 are listed in the
4 0 1 0 0 0 1 1 1 truth table. Others
5 0 1 0 1 I 0 0 0 designate “don’t care
B ¢« 1 29 1 ¢ 9 conditions” /
7 0o 1 1 1 10 1 0)
8 1 0 0 0 1 0 1 1
I

9 1 0 0 1 10 0
Table: Truth table for code converter example
3. Optimization
a. 2-level optimization
The k-maps are plotted to obtain simplified sum-of-products Boolean expressions for
the outputs. Each of the four maps represents one of the outputs of the circuit as a
function of the four inputs.

C

Co ~) CD I
:\} op o1 1l 10 \k oy 01 1110
00 00 I 1 I 1 I | I

01 | 1 | 01 l
B B

X |ox L Ix x nmif x|l x| x| x
A | A
]| 1 1 x| x 10 [1 | X \]
D)
W =A + BC + BD X = BC + BD + BCD
Combinational Logic Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

CD & . =
A\B\ 000 1110 ABY 00 01 11 10
—-—1 —— —
00 || 1 1 00| 1 1
oL || 1 ! 01| 1 I
B B
x| x| x| x nmp x| x| x| X
A A
10ff 1 X|| X 0] 1 X || X
D D
Y =CD + CD Zz=D

b. Multiple-level optimization
This second optimization step reduces the number of gate inputs (and hence the no.
gates). The following manipulation illustrates optimization with multiple-output circuits
implemented with three levels of gates:

T,=C+D
W=A+BC+BD = A +BT,
X=BC+BD +BCD = BT, + BCD
Y=CD +CD

Z=D

[P 3

— e

Do :

Fig: Logic Diagram of BCD- to-Excess-3 Code Converter

4. Technology mapping
This is concerned with the act of mapping of basic circuit (using AND, OR and NOT gates) to a

specific circuit technology (such as NAND, NOR gate tech.).

Combinational Logic Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

HEY! This is advanced topic, and | won’t discuss here. For exam point of view, if you are asked for
BCD-to-Excess-3 code converter, you will finish up your answer by drawing basic circuit shown
above.

Verification

Here we need to test our designed circuit, whether it works correctly. You guys are so keen;
hope you can do it...©.

Analysis Procedure

The design of a combinational circuit starts from the verbal specifications of a required function and
ends with a set of output Boolean functions or a logic diagram. The analysis of a combinational circuit is
somewhat the reverse process. It starts with a given logic diagram and culminates with a set of Boolean
functions, a truth table, or a verbal explanation of the circuit operation.

Obtaining Boolean functions from logic diagram
Steps in analysis:

1.

The first step in the analysis is to make sure that the given circuit is combinational and not
sequential.

Assign symbols to all gate outputs that are a function of the input variables. Obtain the Boolean
functions for each gate.

Label with other arbitrary symbols those gates that are a function of input variables and/or
previously labeled gates. Find the Boolean functions for these gates.

Repeat step 3 until the outputs of the circuit are obtained.

By repeated substitution of previously defined functions, obtain the output Boolean functions in
terms of input variables only.

Analysis of the combinational circuit below illustrates the proposed procedure:

=~ —>

—)—
= = ¢
C —— 2
)
__/

O e

Combinational Logic Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

We note that the circuit has three binary inputs, A, B, and C, and two binary outputs, F; and F,. The
outputs of various gates are labeled with intermediate symbols. The outputs of gates that are a
function of input variables only are F,, T; and T,. The Boolean functions for these three outputs are
F,=AB+AC+ BC
T:=A+B+C
T,=ABC
Next we consider outputs of gates that are a function of already defined symbols:
T3=F,'T;
Fi=T3+T,

The output Boolean function F, just expressed is already given as a function of the in puts only. To
obtain F; as a function of A, B, and C, form a series of substitutions as follows:

Fy=Ty+ To=FiT, + ABC = (AB + AC + BC)'(A + B + C) + ABC
= (A" +B)A' + CYB' + C')YA + B + C) + ABC
= (A" + B'C'YAB' + AC’' + BC' + B'C) + ABC
= A'BC' + A'B'C + AB'C' + ABC

If you want to determine the information-transformation task achieved by this circuit, you can derive
the truth table directly from the Boolean functions and try to recognize a familiar operation. For this
example, we note that the circuit is a full-adder, with F, being the sum output and F, the carry
output. A, B, and C are the three inputs added arithmetically.

Obtaining truth-table from logic diagram

The derivation of the truth table for the circuit is a straightforward process once the output Boolean
functions are known. To obtain the truth table directly from the logic diagram without going through
the derivations of the Boolean functions, proceed as follows:

Steps in analysis:

1. Determine the number of input variables to the circuit. For n inputs, form the 2" possible input
combinations of 1's and 0's by listing the binary numbers from 0 to 2" — 1.

2. Llabel the outputs of selected gates with arbitrary symbols.

3. Obtain the truth table for the outputs of those gates that are a function of the input variables
only.

4. Proceed to obtain the truth table for the outputs of those gates that are a function of
previously defined values until the columns for all outputs are determined.

This process can be illustrated using the circuit above:

We form the eight possible combinations for the three input variables. The truth table for F, is
determined directly from the values of A, B, and C, with F, equal to 1 for any combination that has
two or three inputs equal to 1. The truth table for F," is the complement of F,. The truth tables for
T, and T, are the OR and AND functions of the input variables, respectively. The values for T; are
derived from T, and F,’. T5 is equal to 1 when both T, and F,” are equal to 1, and to O otherwise.
Finally, F, is equal to 1 for those combinations in which either T, or T3 or both are equal to 1.

Combinational Logic Page 10

By Bishnu Rawal
Downloaded from CSIT Tutor

A B < F: F} T, T, Ts F
0 0] 0 1 0 0 0 0
0 0 1 0 L 1 0 1 1
0 1] 0 1 1 0 1 1
0 1 1 1 0 1 0 0 0
1 0 ¢ 0 1 1 0 1 1
1 0 1 1 0 1 0 0 0
1 1 0 1 v 1 0 0 0
1 1 1 1 0 1 1 0 1

Inspection of the truth-table combinations for A, B, C, F; and F, of table above shows that it is
identical to the truth-table of the full-adder.

HEY! When a circuit with don't-care combinations is being analyzed, the situation is entirely different.
We assume here that the don't-care input combinations will never occur.

NAND, NOR and Ex-OR circuits

In unit 3, SOP and POS form of Boolean functions are studied. Also we got to know, Such Boolean
functions can be implemented with 2-level circuits using universal gates (look at NAND and NOR
implementation of Boolean function, unit 3). Here we will look at the multiple level circuits employing
universal gates i.e we will treat the functions which are in standard form.

Multi-level NAND circuits

To implement a Boolean function with NAND gates we need to obtain the simplified Boolean function in
terms of Boolean operators and then convert the function to NAND logic. The conversion of an algebraic
expression from AND, OR, and complement to NAND can be done by simple circuit-manipulation
techniques that change AND-OR diagrams to NAND diagrams.

To obtain a multilevel NAND diagram from a Boolean expression, proceed as follows:

1. From the given Boolean expression, draw the logic diagram with AND, OR, and inverter gates.
Assume that both the normal and complement inputs are available.

2. Convert all AND gates to NAND gates with AND-invert graphic symbols.

Convert all OR gates to NAND gates with invert-OR graphic symbols.

4. Check all small circles in the diagram. For every small circle that is not compensated by another
small circle along the same line, insert an inverter (one-input NAND gate) or complement the
input variable.

w

Example: F= A+ (B'+C) (D'+BE")

4 P A ;

B B

C c

n' D

A B

E r

AND-OR diagram NAND diagram using two graphic symbols

Combinational Logic Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

-

=i,

o aw

=

NAND diagram using one graphic symbol

Multi-level NOR circuits

The NOR function is the dual of the NAND function. For this reason, all procedures and rules for NOR
logic form a dual of the corresponding procedures and rules developed for NAND logic. Similar to NAND,
NOR has also two graphic symbols: OR-invert and invert-AND symbol.

The procedure for implementing a Boolean function with NOR gates is similar to the procedure outlined
in the previous section for NAND gates:
1. Draw the AND-OR logic diagram from the given algebraic expression. Assume that both the
normal and complement inputs are available.
2. Convert all OR gates to NOR gates with OR-invert graphic symbols.
3. Convert all AND gates to NOR gates with invert-AND graphic symbols.
4. Any small circle that is not compensated by another small circle along the same line needs
an inverter or the complementation of the input variable.
Example: F= (AB + E) (C+ D)

=L L —
: o . — >

> e

AND-OR diagram NOR diagram

Alternate NOR diagram

Combinational Logic Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

Ex-OR function
The exclusive-OR (XOR) denoted by the symbol @, is a logical operation that performs the following
Boolean operation:
xDy=xy'+x'y
Itis equal to 1 if only x is equal to 1 or if only y is equal to 1 but not when both are equal.

Realization of XOR using Basic gates and universal gates

A two-input exclusive-OR function is constructed with conventional gates using two inverters, two AND
gates, and an OR gate and next firgure shows the implementation of the exclusive-OR with four NAND
gates.

) >—

>
o

Fig: Implementation XOR with AND-OR-NOT gates

N

D D

Fig: Realization of XOR with NAND gates

N

In second diagram, first NAND gate performs the operation (xy)' = (x' + y'). The other two-level NAND
circuit produces the sum of products of its inputs:

(X' +y)x+(x'+y)y=xy'+x'y=x@Dy

Only a limited number of Boolean functions can be expressed in terms of exclusive-OR operations.
Nevertheless, this function emerges quite often during the design of digital systems. It is particularly
useful in arithmetic operations and error-detection and correction circuits.

Parity generator and Checker

Exclusive-OR functions are very useful in systems requiring error-detection and correction codes. As
discussed before, a parity bit is used for the purpose of detecting errors during transmission of binary
information. A parity bit is an extra bit included with a binary message to make the number of 1's either
odd or even. The message, including the parity bit, is transmitted and then checked at the receiving end
for errors. An error is detected if the checked parity does not correspond with the one transmitted.

= The circuit that generates the parity bit in the transmitter is called a parity generator.

Combinational Logic Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

= The circuit that checks the parity in the receiver is called a parity checker.

Example: Consider a 3-bit message to be transmitted together with an even parity bit.

The three bits, x, y, and z, constitute the message and are the inputs to the circuit. The parity bit P is the
output. For even parity, the bit P must be generated to make the total number of 1’s even (including P).

Three-Bit Message Parity Bit

X y z P

0". 0 0 0 From the truth table, we see tham
0 0 1 1 constitutes an odd function because it is

0 1 0 1 equal to 1 for those minterms whose

0 1 1 0 numerical values have an odd number of 1’s.

1 0 0 1 Therefore, P can be expressed as a three-

1 0 1 0 variable exclusive-OR function: P=x @ y D

1 1 0 0 7
1 1 1 1

Table: Even parity generator truth table

The three bits in the message together with the parity bit are transmitted to their destination, where
they are applied to a parity-checker circuit to check for possible errors in the transmission.

Four Bits Received Parity Error Check
x y z F C
0000 0 = Since the information was transmittedm
00 0 I | _ _ .
0010 | even parity, the four bits received must have
00 1 1 0 an even number of 1's. An error occurs during
01 020 1 the transmission if the four bits received have
0.1 01 0 an odd number of 1's, indicating that one bit
8 { i (l) (l) has changed in value during transmission.
1000 1 = The output of the parity checker, denoted by
1 0 0 | 0 C, will be equal to 1 if an error occurs, that is,
1 01 0 0 if the four bits received have an odd number
1 01 1 1 of 1's.
1 1 00 0 . . .
1101 1 = The parity checker can be implemented with
1110 1 vxclusive—OR gates: C=x Dy @z D P.
1 1 11 0

Table: Even parity checker truth table

Combinational Logic Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

Logic diagrams for parity generator and Parity checker are shown below:

x
* y
Y / P C
2
z P
(a) 3-bit even parity generator (b) 4-bit even parity checker
Combinational Logic =~ Ppagels

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 5
Combinational Logic with MSI and LSI

(I have included Point! ‘s throughout the chapter to designate extra things you need to know about the
concerned topic and are unimportant for the exam point of view.)

Introduction

The purpose of Boolean-algebra simplification is to obtain an algebraic expression that, when
implemented, results in a low-cost circuit. Two circuits that perform the same function, the one that
requires fewer gates is preferable because it will cost less. But this is not necessarily true when
integrated circuits are used. With integrated circuits, it is not the count of gates that determines the
cost, but the number and types of ICs employed and the number of interconnections needed to
implement the digital circuits of varying complexities (I mean circuits with different level of integrations
viz. SSI, MSI, LSI, VLSI, ULSI etc).

There are several combinational circuits that are employed extensively in the design of digital systems.
These circuits are available in integrated circuits and are classified as MSI components. MSI components
perform specific digital functions commonly needed in the design of digital systems.

Combinational circuit-type MSI components that are readily available in IC packages are binary adders,
subtractors, comparators, decoders, encoders, and multiplexers. These components are also used as
standard modules within more complex LSI and VLSI circuits and hence used extensively as basic
building blocks in the design of digital computers and systems.

Binary Adder

This circuit sums up two binary numbers A and B of n-bits using full-adders to add each bit-pair & carry
from previous bit position. The sum of A and B can be generated in two ways: either in a serial fashion
or in parallel.

o The serial addition method uses only one full-adder circuit and a storage device to hold the
generated output carry. The pair of bits in A and B are transferred serially, one at a time,
through the single full-adder to produce a string of output bits for the sum. The stored output
carry from one pair of bits is used as an input carry for the next pair of bits.

e The parallel method uses n full-adder circuits, and all bits of A and B are applied simultaneously.
The outputs carry from one full-adder is connected to the input carry of the full-adder one
position to its left. As soon as the carries are generated, the correct sum bits emerge from the
sum outputs of all full-adders.

Binary Parallel adder

A binary parallel adder is a digital circuit that produces the arithmetic sum of two binary numbers in
parallel. It consists of full-adders connected in a chain, with the output carry from each full-adder
connected to the input carry of the next full-adder in the chain.

Diagram below shows the interconnection of four full-adder (FA) circuits to provide a 4-bit binary
parallel adder. The augend bits of A and the addend bits of B are designated by subscript numbers from
right to left. The carries are connected in a chain through the full-adders. The S outputs generate the
required sum bits. The input carry to the adder is C; and the output carry is Cs.

Combinational Logic with MSI and LSI Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

When the 4-bit full-adder circuit is enclosed within an IC package, it has four terminals for the augend
bits, four terminals for the addend bits, four terminals for the sum bits, and two terminals for the input
and output carries.

34 ,‘1_1 83 .’l_‘ 82 ," 2 B| Ai
|
2R S R S S SN
Cs C; C,
FA | FA - Fd — FA |-,
Cs Sy Sy S, S,

Fig: 4-bit parallel binary adder

Point-1! (To be noted my Boys...©)

The 4-bit binary-adder is a typical example of an MSI function. It can be used in many applications
involving arithmetic operations. Observe that the design of this circuit by the classical method would
require a truth table with 2° = 512 entries, since there are 9 inputs to the circuit. By using an iterative
method of cascading an already known function, we were able to obtain a simple and well-organized
implementation.

Point-2!

The carry propagation time is a limiting factor on the speed with which two numbers are added in
parallel. Although a parallel adder, or any combinational circuit, will always have some value at its
output terminals, the outputs will not be correct unless the signals are given enough time to propagate
through the gates connected from the inputs to the outputs. Since all other arithmetic operations are
implemented by successive additions, the time consumed during the addition process is very critical. An
obvious solution for reducing the carry propagation delay time is to employ faster gates with reduced
delays. But physical circuits have a limit to their capability. Another solution is to increase the
equipment complexity in such a way that the carry delay time is reduced. There are several techniques
for reducing the carry propagation time in a parallel adder. The most widely used technique employs the
principle of look-ahead carry.

Decimal Adder

Computers or calculators that perform arithmetic operations directly in the decimal number system
represent decimal numbers in binary-coded form.
= Decimal adder is a combinational circuit that sums up two decimal numbers adopting particular
encoding technique.
= Adecimal adder requires a minimum of nine inputs and five outputs, since four bits are required
to code each decimal digit and the circuit must have an input carry and output carry.
= Of course, there is a wide variety of possible decimal adder circuits, dependent upon the code
used to represent the decimal digits.

Combinational Logic with MSI and LSI Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

BCD Adder
This combinational circuit adds up two decimal numbers when they are encoded with binary-coded
decimal (BCD) form.

Adding two decimal digits in BCD, together with a possible carry, the output sum cannot be greater
than9+9+1=19.

Applying two BCD digits to a 4-bit binary adder, the adder will form the sum in binary ranging from 0
to 19. These binary numbers are listed in Table below and are labeled by symbols K, Zg, Z4, Z5, Z;. K is
the carry, and the subscripts under the letter z represent the weights 8, 4, 2, and 1 that can be
assigned to the four bits in the BCD code.

Binary Sum . . BCDsm Decimal
K Zg Zy Z: Z C Sa S S 5
o - = The first column in the table

0 0 0 0 0 0 0 0 0 0 0 lists the bi th
0 0 0 0 | 0 0 0 0 1 i ists the binary sums as they
0 0 0 1 0 0 0 0 1 0 2 appearin the OUtpUtS of a 4-
0 0 0 1 1 0 0 0 1 J 3 bit binary adder.
0 0 1 0 0 0 0 1 0 0 4 = The output sum of two
8 8 ll ? (') 8 8 : ? (1) 2 decimal digits must be
0 0 1 I] 0 0 1) 1 7 represented |n. BCD and
0 1 0 0 0 0 I 0 0 0 8 should appear in the form
0 1 0 0 1 0 1 0 0 1 9 listed in the second column.

— T T e - = The problem is to find a
0 1 0 { 0 i 0 0 0 0 10 simple rule by which the
0 ! 0 1 ! 1 0 0 0 ! 1 binary number, in the first
0 1 1 0 0 1 0 0 1 0 12 | b d
0 1 | 0 1) 0 0) ! 13 column can be converted to
0 1 1 1 0 i 0 1 0 0 14 the correct BCD-digit
0 1 1 1 i 1 0 | 0 1 15 representation of the
1 0 0 0 0 1 0 1 ! Y 16 number in the second
10 o o 1 oo Lol 17 column.
1 0 0 | 0 i | 0 0 0 18
1 0 0 1 1 1 | 0 0 | 19

Looking at the table, we see that:
When (binary sum) <= 1001

Corresponding BCD number is identical, and therefore no conversion is needed.

When (binary sum) > 1001

Non-valid BCD representation is obtained. The addition of binary 6 (0110) to the binary sum
converts it to the correct BCD representation and also produces an output carry as required.

The logic circuit that detects the necessary correction can be derived from the table entries.

Correction is needed when
o The binary sum has an output carry K = 1.
o The other six combinations from 1010 to 1111 that have Zg=1. To distinguish them from
binary 1000 and 1001, which also have a 1 in position Zg, we specify further that either Z, or
Z, must have a 1. The condition for a correction and an output carry can be expressed by the
Boolean function
C=K+2ZsZ4+ 252,
When C =1, it is necessary to add 0110 to the binary sum and provide an output carry for the next
stage.

Combinational Logic with MSI and LSI Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

Addend Augend

l l l l l 1 l l = A BCD adder is a circuit that adds
. two BCD digits in parallel and

Carry c produces a sum digit also in BCD.
out K 4-bit binary adder ~— i = BCD adder must include the
2y oz, 2, Z, correction logic in its internal

construction.

= Toadd 0110 to the binary sum, we
use a second 4-bit binary adder, as
shown in diagram.

= The two decimal digits, together
with the input carry, are first added
in the top 4-bit binary adder to
produce the binary sum.

= When the output carry = 0, nothing
is added to the binary sum. When it

Output
carry

I 1 J’ 3 is equal to 1, binary 0110 is added
| to the binary sum through the
4-bit binary adder bottom 4-bit binary adder.
= The output carry generated from
the bottom binary adder can be
l l l l ignored, since it supplies
A) information alreac_ly available at the
Fig: Block diagram of BCD adder output-carry terminal.

A decimal parallel adder that adds n decimal digits needs n BCD adder stages. The output carry from one
stage must be connected to the input carry of the next higher order stage.

Point!

The BCD adder can be constructed with three IC packages. Each of the 4-bit adders is an MST function
and the three gates for the correction logic need one SST package. However, the BCD adder is available
in one MSI circuit. To achieve shorter propagation delays, an MSI BCD adder includes the necessary
circuits for look-ahead carries. The adder circuit for the correction does not need all four full-adders, and
this circuit can be optimized within the IC package.

Magnitude Comparator
A Magnitude comparator is a combinational circuit that compares two numbers, A and B, and
determines their relative magnitudes. The outcome of the comparison is specified by three binary
variables that indicate whether A>B, A=B, or A<B.
Consider two numbers, A and B, with four digits each. Write the coefficients of the numbers with
descending significance as follows:

A= AzAA A

B = B3B,B,B,
Where each subscripted letter represents one of the digits in the number, the two numbers are equal if
all pairs of significant digits are equal, i.e., if A; =Bz and A, =B, and A; = B; and A = B,.

When the numbers are binary, the digits are either 1 or 0 and the equality relation of each pair of bits
can be expressed logically with an equivalence function:

X;=AB;+A’B/, i=0,1,2,3
Where X; = 1 only if the pair of bits in position i are equal, i.e., if both are 1's or both are 0's.

Combinational Logic with MSI and LSI Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

Algorithm

(A=B)
For the equality condition to exist, all X; variables must be equal to 1. This dictates an AND operation of
all variables:
(A = B) = X3X,X:1Xo
The binary variable (A = B) is equal to 1 only if all pairs of digits of the two numbers are equal.

(A<B) or (A>B)
To determine if A is greater than or less than B, we check the relative magnitudes of pairs of significant
digits starting from the most significant position. If the two digits are equal, we compare the next lower
significant pair of digits. This comparison continues until a pair of unequal digits is reached.
A > B: If the corresponding digit of Ais 1 and that of B is 0.
A < B: If the corresponding digit of A is 0 and that of Biis 1.
The sequential comparison can be expressed logically by the following two Boolean functions:
(A > B) = A3B3’ + X3AzBZ' + X3X2AlBl' + X3X2X1AoBO'
(A < B) = A3’Bg + X3A2' B, + X3X2A1’Bl + X3X2X1Ao' Bo
The symbols (A > B) and (A < B) are binary output variables that are equal to 1 when A>BorA<B
respectively.

A
’ . ﬁ The gate implementation of\
b 3

the three output variables
(A=B), (A<B) and (A>B) derived
is simpler than it seems
because it involves a certain
amount of repetition.

= Four X outputs can be
generated. Equivalence
(exclusive NOR) circuits and
applied to an AND gate to give
the output binary variable (A =

K B).
.%{A <B)

B,

Az

A4y

Ag

BD 1 +—

=

Fig: 4-bit magnitude comparator

JU 00 00 O

Combinational Logic with MSI and LSI Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

Decoders and Encoders

Discrete quantities of information are represented in digital systems with binary codes. A binary code of

n bits is capable of representing up to 2" distinct elements of the coded information.

= Decoder is a combinational circuit that converts binary information from n input lines to a maximum
of 2" unique output lines.

o If the n-bit decoded information has unused or don't-care combinations, the decoder output
will have fewer than 2" outputs.
o n-to-m-line decoders have m <= 2".

* Encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2" (or
fewer) input lines and n output lines. The output lines generate the binary code corresponding to
the input value.

o An example of an encoder is the octal-to-binary encoder which has eight inputs, one for
each of the octal digits, and three outputs that generate the corresponding binary number.

Example: 3-to-8 line decoder
The 3 inputs are decoded into 8 outputs, each output representing one of the minterms of the 3-input

variables.
@___ Dy = ¥y'7
— 2 { Dy
Dz——z’_vz‘
| 2
y *
[— o
— — D z
X T 4‘. vy i v
] \ Do~ xy'z
l'_-\ D = v
—/
D, = xyz
Fig: 3-to-8 line decoder
Inputs | Outputs
x y 2z] Do D D, Dy D, Ds Dy, Dy
o o0 o | 1 0o ¢ 0 0 0 0 o Output variables are mutually exclusive
0o o 1 0 1 ¢ o 0 0 0 o because only one output can be equal to 1 at
o 1 o o 0o 1 o0 0 0 0 0 anyone time. The output line whose value is
0 1 1 0 0 0 1 0 0 0 0 lto 1 ts th int ivalent
I o 0 o 0o o0 0 1 o0 o o equa o' represents the minterm eq'ulva er'1
1 o 1 0 0 o 0 0 1 0 0 of the binary number presently available in
rr o ¢ o0 o0 o o0 o0 0 1 O the input lines.
1 11 | 0o o0 o o o o0 0 1
Table: Truth-table for 3-to-8 line Decoder
Combinational Logic with MSI and LSI Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

Combinational logic Implementation
A decoder provides the 2" minterm of n input variables. Since any Boolean function can be expressed in
sum of minterms canonical form, one can use a decoder to generate the minterms and an external OR
gate to form the sum.
e Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2"-
line decoder and m OR gates.
e Boolean functions for the Decoder-implemented-circuit are expressed in sum of minterms. This
form can be easily obtained from the truth table or by expanding the functions to their sum of
minterms.

Example: Implement a full-adder circuit with a decoder.
Solution: From the truth table of the full-adder, we obtain the functions for this combinational
circuit in sum of minterms as:
Six,y,2)=2(1,2,4,7)
Clx,y,2)=Z(3,56,7)
Since there are three inputs and a total of eight minterms, we need a 3-to-8-line decoder.

0 ———
1 s -
" . De'coder generates the eight
X = = minterms for x, y, z.
3.8 3 = The OR gate for output S
v—2" ocoder . forms the sum of

minterms 1, 2, 4, and 7.

- 40 5 = The OR gate for output C
- = > C
. - forms the sum of

minterms 3, 5, 6, and 7.

Fig: Implementation of Full-adder with a decoder circuit

Multiplexers
= Adigital multiplexer is a combinational circuit that selects binary information from one of many
input lines and directs it to a single output line.
o The selection of a particular input line is controlled by a set of selection lines.
o Normally, there are 2" input lines and n selection lines whose bit combinations
determine which input is selected.
= A demultiplexer is a circuit that receives information on a single line and transmits this
information on one of 2" possible output lines. The selection of a specific output line is
controlled by the bit values of n selection lines.
o A Decoder with an enable input can function as a demultiplexer.
o Here, enable input and input variables for decoder is taken as data input line and
selection lines for the demultiplexer respectively.

Combinational Logic with MSI and LSI Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

I \
- Sl .!u Y
o 0 fo
b) o 1l
L/ :
v 1 0|/
I 1 1 I
Table: Function table
a
—_] 1
fE EE Inputs _J N :lrj\l(¥ | Output
3 5
5, [
Select
&y
Fig: Logic Diagram: 4-to-1 line Multiplexer Fig: Block Diagram of Multiplexer

DEMO: consider the case when s;s, = 10. The AND gate associated with input J, has two of its
inputs equal to | and the third input connected to I,. The other three AND gates have at least
one input equal to 0, which makes their outputs equal to 0. The OR gate output is now equal
to the value of |,, thus providing a path from the selected input to the output. A multiplexer
is also called a data selector, since it selects one of many inputs and steers the binary
information to the output line.

Boolean Function implementation
As decoder can be used to implement a Boolean function by employing an external OR gate, we can
implement any Boolean function (in SOP) with multiplexer since multiplexer is essentially a decoder with
the OR gate already available.
= |f we have a Boolean function of n + 1 variables, we take n of these variables and connect them
to the selection lines of a multiplexer. The remaining single variable of the function is used for
the inputs of the multiplexer. If A is this single variable, the inputs of the multiplexer are chosen
to be either A or A' or 1 or 0. By judicious use of these four values for the inputs and by
connecting the other variables to the selection lines, one can implement any Boolean function
with a multiplexer.
» So, itis possible to generate any function of n + 1 variables with a 2"-to-1 multiplexer.

Example: Implement Boolean function F{A, B. C) = Z(1. 3, 5, 6) with multiplexer.

Solution: The function can be implemented with a 4-to-1 multiplexer, as shown in Fig. below. Two of
the variables, B and C, are applied to the selection lines in that order, i.e., B is connected to s; and C
to sg. The inputs of the multiplexer are 0,1, Aand A".

Combinational Logic with MSI and LSI Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

Minterm A B C) F
0 00 0| 0
—_—
0 fo 1 00 1] 1
I h ax1 2 01 0|0
A g, Muxo ¥ d 3 001 1|1
]
) 4 1 0 0| o
A_"___IIS .5’] .5‘0
5 1L 0 1| 1 L L 1, h
3___1 6 11 01 ale @ 2 Q
7 11 1o Ala G @ 7
0 1 A 4
fa) Multiplexer implementation {b) Truth table

(c) Implementation table

Most important thing during this implementation is the implementation table which is derived from
following rules:
List the inputs of the multiplexer and under them list all the minterms in two rows. The first row lists
all those minterms where A is complemented, and the second row all the minterms with A
uncomplemented, as shown in above example. Circle all the minterms of the function and inspect
each column separately.
» If the two minterms in a column are not circled, apply O to the corresponding multiplexer
input.
» If the two minterms are circled, apply 1 to the corresponding multiplexer input.
» If the bottom minterm is circled and the top is not circled, apply A to the corresponding
multiplexer input.
» If the top minterm is circled and the bottom is not circled, apply A’ to the corresponding
multiplexer input.
For clearer concept, do the following exercise:
Question: Implement the following function with a multiplexer:

F(A,B.C,D)=Z2(0,1,3,4,8,9,15)
Solution: See text book, page no. 189.

Read Only Memory (ROM)

A read-only memory (ROM) is a device that includes both the decoder and the OR gates within a single
IC package. The connections between the outputs of the decoder and the inputs of the OR gates can be
specified for each particular configuration. The ROM is used to implement complex combinational
circuits within one IC package or as permanent storage for binary information.

A ROM is essentially a memory (or storage) device in which permanent binary information is stored. The
binary information must be specified by the designer and is then embedded in the unit to form the
required interconnection pattern. ROMs come with special internal electronic fuses that can be
"programmed" for a specific configuration. Once the pattern is established, it stays within the unit even
when power is turned off and on again.

Combinational Logic with MSI and LSI Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

n inputs
lp It consists of n input lines and m output lines. Each bit combinm
the input variables is called an address. Each bit combination that
comes out of the output lines is called a word. The number of bits per
2;(;‘]: word is equal to the number of output lines, m. An address is
essentially a binary number that denotes one of the minterms of n
variables. The number of distinct addresses possible with n input
1 variables is 2". /
m outputs

Example: 32 x4 ROM (unit consists of 32 words of 8 bits each)

Minterms . . .
Address input e The five input variables are

'}' decoded into 32 lines. Each
output of the decoder
represents one of the minterms
4y —= ! of a function of five variables.
Ay—» S 32 2 Each one of the 32 addresses
decoder I selects one and only one output
from the decoder. The address
Ag ——=] is a 5-bit number applied to the
i . . inputs, and the selected
B _{| minterm out of the decoder is
L 55 Ll;, L 5 the one marked with the
LLL]: % ’: equivalent decimal number. The
3 32 outputs of the decoder are
L connected through fuses to
each OR gate. Only four of these
fuses are shown in the diagram,
but actually each OR gate has
32 inputs and each input goes
o E, F Fi through a fuse that can be
blown as desired.

Ay — 0

A —

a1

128 fuses - =

|
¢
o
oo
oo -
o—
(=]

Fig: logic construction of a 32 x4 ROM

Combinational Logic Implementation
From the logic diagram of the ROM, it is clear that each output provides the sum of all the minterms of
the n input variables. Remember that any Boolean function can be expressed in sum of minterms form.
By breaking the links of those minterms not included in the function, each ROM output can be made to
represent the Boolean function.
* For an n-input, m-output combinational circuit, we need a 2" x m ROM.
= The blowing of the fuses is referred to as programming the ROM.
= The designer need only specify a ROM program table that gives the information for the
required paths in the ROM. The actual programming is a hardware procedure that follows
the specifications listed in the program table.

Example: Consider a following truth table:
‘41

Truth table specifies a combinational circuit with 2 inputs and 2 outputs. The Boolean function can be
represented in SOP:

Combinational Logic with MSI and LSI Page 10

By Bishnu Rawal
Downloaded from CSIT Tutor

FilA,, Ag)) = Z(1, 2, 3)
Fx(4q, Ao) = Z(0, 2)

x4
decoder 10 Diagram shows the internal construction of a 4X2

A, — 1 ROM. It is now necessary to determine which of
’ the eight available fuses must be blown and
i’l’ which should be left intact. This can be easily

done from the output functions listed in the truth
table. Those minterms that specify an output of 0
should not have a path to the output through the
OR gate. Thus, for this particular case, tile truth
table shows three 0's, and their corresponding
fuses to the OR gates must be blown.

£ £
Fig: Combinational-circuit implementation with a 4 x 2 ROM

This example demonstrates the general procedure for implementing any combinational circuit with a
ROM. From the number of inputs and outputs in the combinational circuit, we first determine the size of
ROM required. Then we must obtain the programming truth table of the ROM; no other manipulation or
simplification is required. The 0's (or 1's) in the output functions of the truth table directly specify those
fuses that must be blown to provide the required combinational circuit in sum of min terms form.

Question: Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and generates
an output binary number equal to the square of the input number.
Solution: See text book page no. 184, if any confusion, do ask me (even call me...©)

Types of ROM

ROMis: For simple ROMs, mask programming is done by the manufacturer during the fabrication process
of the unit. The procedure for fabricating a ROM requires that the customer fill out the truth table the
ROM is to satisfy. The truth table may be submitted on a special form provided by the manufacturer.
The manufacturer makes the corresponding mask for the paths to produce the 1's and 0's according to
the customer's truth table. This procedure is costly because the vendor charges the customer a special
fee for custom masking a ROM. For this reason, mask programming is economical only if large quantities
of the same ROM configuration are to be manufactured.

PROMs: Programmable read-only memory or PROM units contain all 0's (or all 1's) in every bit of the
stored words. The approach called field programming is applied for fuses in the PROM which are blown
by application of current pulses through the output terminals. This allows the user to program the unit
in the laboratory to achieve the desired relationship between input addresses and stored words. Special
units called PROM programmers are available commercially to facilitate this procedure. In any case, all
procedures for programming ROMs are hardware procedures even though the word programming is
used.

EPROMs: The hardware procedure for programming ROMs or PROMs is irreversible and, once
programmed, the fixed pattern is permanent and cannot be altered. Once a bit pattern has been

Combinational Logic with MSI and LSI Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

established, the unit must be discarded if the bit pattern is to be changed. A third type of unit available
is called erasable PROM, or EPROM. EPROMs can be restructured to the initial value (all O's or all 1's)
even though they have been changed previously. When an EPROM is placed under a special ultraviolet
light for a given period of time, the shortwave radiation discharges the internal gates that serve as
contacts. After erasure, the ROM returns to its initial state and can be reprogrammed.

EEPROMs: Certain ROMs can be erased with electrical signals instead of ultraviolet light, and these are
called electrically erasable PROMs, or EEPROMs.

Point!
The function of a ROM can be interpreted in two different ways:
= The first interpretation is of a unit that implements any combinational circuit. From this point of
view, each output terminal is considered separately as the output of a Boolean function
expressed in sum of minterms.
= The second interpretation considers the ROM to be a storage unit having a fixed pattern of bit
strings called words. From this point of view, the inputs specify an address to a specific stored
word, which is then applied to the outputs. This is the reason why the unit is given the name
read-only memory. Memory is commonly used to designate a storage unit. Read is commonly
used to signify that the contents of a word specified by an address in a storage unit is placed at
the output terminals. Thus, a ROM is a memory unit with a fixed word pattern that can be read
out upon application of a given address.

Programmable Logic Array (PLA)

A combinational circuit may occasionally have don't-care conditions. When implemented with a ROM, a
don't care condition becomes an address input that will never occur. The words at the don't-care
addresses need not be programmed and may be left in their original state (all O's or all 1's). The result is
that not all the bit patterns available in the ROM are used, which may be considered a waste of available
equipment.

Def": Programmable Logic Array or PLA is LS| component that can be used in economically as an
alternative to ROM where number of don’t-care conditions is excessive.

Difference between ROM and PLA

ROM PLA
1. ROM generates all the minterms as an output | 1. PLA does not provide full decoding of the
of decoder. variables.
2. Uses decoder 2. Decoder is replaced by group of AND gates

each of which can be programmed to
generate a product term of the input

variables.
3. The size of the PLA is specified by the number | 3. The size of the PLA is specified by the number
of inputs (n) and the number of outputs (m). of inputs (n), the number of product terms

(k), and the number of outputs (m) (=number
of sum terms)
4. No. of programmed fuses =2" * m 4. No. of programmed fuses=2n*k+k*m+m

Combinational Logic with MSI and LSI Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

Block Diagram of PLA

A block diagram of the PLA is shown in Fig. below. It consists of n inputs, m outputs, k product terms,
and m sum terms. The product terms constitute a group of kK AND gates and the sum terms constitute a
group of m OR gates. Fuses are inserted between all n inputs and their complement values to each of
the AND gates. Fuses are also provided between the outputs of the AND gates and the inputs of the OR
gates.

m

n Xk fuses
fuses o
O——0——0—"] & product m sum
terms 00— terms
. o o—»| (AND gates) k Xm (OR gates) m
n n Xk fuses output
inputs fuses

Fig: PLA block diagram

PLA program table and Boolean function Implementation

The use of a PLA must be considered for combinational circuits that have a large number of inputs and
outputs. It is superior to a ROM for circuits that have a large number of don't-care conditions. Let me
explain the example to demonstrate how PLA is programmed.

Consider a truth table of the combinational circuit:

A B C Iy F
60 0 0 0 o
0 0 1 0 o0
o 1 0 a 0
o 1 1 0 1
1 0 o0 I 0
1o 1 l 1
I 1 0 o 0
1 1] 1 1

PLA implements the functions in their sum of products form (standard form, not necessarily canonical as
with ROM). Each product term in the expression requires an AND gate. It is necessary to simplify the
function to a minimum number of product terms in order to minimize the number of AND gates used.
The simplified functions in sum of products are obtained from the following maps:

B B
BC —am, BC —
00 01 11 10 . 1 0 0L 11 10
o] 0 1
A{l 1 | 1 A{l 1 1
[—
C ¢
Fy=AB"+ AC Fo=AC+ BC

There are three distinct product terms in this combinational circuit: AB’, AC and BC. The circuit has three
inputs and two outputs; so the PLA can be drawn to implement this combinational circuit.

Combinational Logic with MSI and LSI Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

A O -—
i

—2 08—

O O—

p = I
|/

!
2
3

——
D F,

) C

Lo ¢
b Fy

8 g -

=>C =

s R v —
9] o—
)
Is S s)
O [T—

Fig: PLA with 3 inputs, 3 product terms, and 2 outputs

Programming the PLA means, we specify the paths in its AND-OR-NOT pattern. A typical PLA program
table consists of three columns.

First column: lists the product terms numerically.

Second column: specifies the required paths between inputs and AND gates.

Third column: specifies the paths between the AND gates and the OR gates.
Under each output variable, we write a T (for true) if the output inverter is to be bypassed, and C (for
complement) if the function is to be complemented with the output inverter.

Product Inputs Qutputs
term A B C |IhN F
AR 1 1 0 - 1 -
AC 2 1 - 1 i
BC 3 - 1 - 1
T T |nic]

Table: PLA program table

For each product term, the inputs are marked with 1, 0 or - (dash).

e If avariable in the product term appears in its normal form (unprimed), the corresponding input

variable is marked with a 1.

e Ifit appears complemented (primed), the corresponding input variable is marked with a 0.

e If the variable is absent in the product term, it is marked with a dash.
Each product term is associated with an AND gate. The paths between the inputs and the AND gates are
specified under the column heading inputs. A 1 in the input column specifies a path from the
corresponding input to the input of the AND gate that forms the product term. A 0 in the input column
specifies a path from the corresponding complemented input to the input of the AND gate. A dash
specifies no connection.

The appropriate fuses are blown and the ones left intact form the desired paths. It is assumed that the
open terminals in the AND gate behave like a 1 input. The paths between the AND and OR gates are
specified under the column heading outputs. The output variables are marked with 1's for all those
product terms that formulate the function. We have
F;=AB"'+AC

So F; is marked with 1's for product terms 1 and 2 and with a dash for product term 3. Each product
term that has a 1 in the output column requires a path from the corresponding AND gate to the output
OR gate.

Combinational Logic with MSI and LSI Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

Unit 6
Sequential Logic

Introduction

Till now, we study combinational circuits in which the outputs at any instant of time are entirely
dependent upon the inputs present at that time. Although every digital system is likely to have
combinational circuits, most systems encountered in practice also include memory elements, which
require that the system be described in terms of sequential logic.

e Memory elements are devices capable of storing binary

Inputs ———»|

-~ Qut
Combinational | Cutputs

information within them. The binary information stored
in the memory elements at any given time defines the
—| Memory state of the sequential circuit.

circuit

-

lement . . .
clements e Block diagram shows external outputs in a sequential
circuit are a function not only of external inputs, but

Fig: Block diagram of sequential circuit

also of the present state of the memory elements. Thus,
a sequential circuit is specified by a time sequence of
inputs, outputs, and internal states.

There are two main types of sequential circuits. Their classification depends on the timing of their

signals.

= Synchronous sequential circuit: whose behavior can be defined from the knowledge of its
signals at discrete instants of time

o A synchronous sequential logic system, by definition, must employ signals that affect

the memory elements only at discrete instants of time. One way of achieving this goal is
to use pulses of limited duration throughout the system so that one pulse-amplitude
represents logic-1 and pulse amplitude (or the absence of a pulse) represents logic-0.
The difficulty with a system of pulses is that any two pulses arriving from separate
independent sources to the inputs of the same gate will exhibit unpredictable delays,
will separate the pulses slightly, and will result in unreliable operation.

Practical synchronous sequential logic systems use fixed amplitudes such as voltage
levels for the binary signals. Synchronization is achieved by a timing device called a
master-clock generator, which generates a periodic train of clock pulses. The clock
pulses are distributed throughout the system in such a way that memory elements are
affected only with the arrival of the synchronization pulse. Synchronous sequential
circuits that use clock pulses in the inputs of memory elements are called clocked
sequential circuits. Clocked sequential circuits are the type encountered most
frequently. They do not manifest instability problems and their timing is easily divided
into independent discrete steps, each of which is considered separately. The sequential
circuits discussed in this chapter are exclusively of the clocked type.

= Asynchronous sequential circuit: Behavior depends upon the order in which its input signals
change and can be affected at any instant of time. The memory elements commonly used in
asynchronous sequential circuits are time-delay devices.

Sequential Logic Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

Information storage in digital system

e Fig (a) shows a buffer which has a propagation delay t,q and can store information for time t,q4 since
buffer input at time t reaches to its output at time t,q. But, in general, we wish to store information
for an indefinite time that is typically much longer than the time delay of one or even many gates.
This stored value is to be changed at arbitrary times based on the inputs applied to the circuit and
should not depend on the specific time delay of a gate.

e In Fig (b) we have output of buffer connected to its input making a feedback path. This time input to
buffer has been 0 for at least time t,4. Then the output produced by the buffer will be 0 at time t +
toa. This output is applied to the input so that the output will also be 0 at time 1 + 2t,q4. This
relationship between input and output holds for all t, so the 0 will be stored indefinitely.

o A buffer is usually implemented by using two inverters, as shown in Fig (d). The signal is inverted
twice, i.e. (X’)’ = X, giving no net inversion of the signal around the loop.

’ . In fact, this example is an illustration of one of the
Lo [> & — most popular methods of implementing storage in

[> ; ‘ Do DO—L computer memories.
' I' 3 e e With inverters there is no way to change the
o (d) information stored. By replacing the inverters with
; NOR or NAND gates, the information can be changed.
‘D e Asynchronous storage circuits called latches are made

in this manner.

Flip-Flops
The memory elements used in clocked sequential circuits are called flip-flops. These circuits are binary
cells capable of storing one bit of information. A flip-flop circuit has two outputs, one for the normal
value and one for the complement value of the bit stored in it. Binary information can enter a flip-flop in
a variety of ways, a fact that gives rise to different types of flip-flops.
= A flip-flop circuit can maintain a binary state indefinitely (as long as power is delivered to the
circuit) until directed by an input signal to switch states.
= The major differences among various types of flip-flops are in the number of inputs they possess
and in the manner in which the inputs affect the binary state.

Basic flip-flop circuit (direct-coupled RS flip-flop or SR latch)
A flip-flop circuit can be constructed from two NAND gates or two NOR gates. These constructions are
shown in the logic diagrams below. Each circuit forms a basic flip-flop upon which other more
complicated types can be built. The cross-coupled connection from the output of one gate to the input
of the other gate constitutes a feedback path. For this reason, the circuits are classified as asynchronous
sequential circuits. Each flip-flop has two outputs, Q and Q', and two inputs, set and reset.

1

0 R{reset) S RjQ Q
Q .

I Ot 0O
0 011 O {(afterS 1.LR-- O

{ : 0 1o 1
'j >: o 0 0j0 1 (alterS G R 1)

0 S(sel) ' 1 1{0 O

(a) Logic diagram (b) Truth table

Fig: basic flip-flop circuit with NOR gates

Sequential Logic Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

» Output of a NOR gate is 0 if any input is 1, and that the output is 1 only when all inputs are 0.

» First, assume that the set input is 1 and the reset input is 0. Since gate-2 has an input of 1, its output Q' must be 0,
which puts both inputs of gate-1 at 0, so that output Q is 1. When the set input is returned to 0, the outputs remain
the same i.e. output Q' stay at 0, which leaves both inputs of gate-1 at 0, so that output Q is 1.

» Similarly, 1 in the reset input changes output Q to 0 and Q' to 1. When the reset input returns to 0, the outputs do
not change.

» When a 1is applied to both the set and the reset inputs, both Q and Q' outputs go to 0. This condition violates the
fact that outputs Q and Q' are the complements of each other. In normal operation, this condition must be avoided
by making sure that 1's are not applied to both inputs simultaneously.

A flip-flop has two useful states.

Set state: When Q=1and Q' =0, (or 1-state),

Reset state: When Q =0and Q' = 1, (or O-state)

The outputs Q and Q' are complements of each other and are referred to as the normal and
complement outputs, respectively. The binary state of the flip-flop is taken to be the value of the normal
output.

Under normal operation, both inputs remain at 0 unless the state of the flip-flop has to be changed. The
application of a momentary 1 to the set input causes the flip-flop to go to the set state. The set input
must go back to 0 before a 1 is applied to the reset input. A momentary 1 applied to the reset input
causes the flip-flop to go the clear state. When both inputs are initially 0, a 1 applied to the set input
while the flip-flop is in the set state or a 1 applied to the reset input while the flip-flop is in the clear
state, leaves the outputs unchanged.

0 S(sen s Rl ¢
1 0(0 1
1 1|0 | (afterS-- LR O)
1 g 0 1|1 0
‘ I 1|1 Q (ufterS=0R:-=1}
0 R (reset) ¢ 011 1
(a) Logic diagram (b) Truth table

Fig: Basic flip-flop circuit with NAND gates

» The NAND basic flip-flop circuit operates with both inputs normally at 1 unless the state of the flip-flop has to be
changed.

» The application of a momentary 0 to the set input causes output Q to go to 1 and Q' to go to 0, thus putting the flip-
flop into the set state

> After the set input returns to 1, a momentary 0 to the reset input causes a transition to the clear state.

» When both inputs go to 0, both outputs go to 1- a condition avoided in normal flip-flop operation.

The operation of the basic flip-flop can be modified by providing an additional control input that
determines when the state of the circuit is to be changed. This fact arises 4 common types of flip-flops
and are discussed in what follows:

1. RS Flip-Flop
It consists of a basic flip-flop circuit and two additional NAND gates along with clock pulse (CP) input.
The pulse input acts as an enable signal for the other two inputs.

Sequential Logic Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

e When the pulse input goes to 1, information from the S or R input is allowed to reach the
output.

e Setstate:S=1,R=0,and CP=1.

e Resetstate:S=0,R=1,and CP=1.

e |n either case, when CP returns to 0, the circuit remains in its previous state. When CP = 1 and
both the S and R inputs are equal to 0, the state of the circuit does not change.

R Qir + 1}
! {. n
[- I | ! ktumm.ﬂc RS Flip-Fiop

|
5 . 1 i i u i, — QU ”7, o
3 Q .
P 4] i i) 1 00 Q) No change
1 i t Indeterminate 01 0 Reset
10 1 Sei
{a} Logic diagram (b)Y Characteristic tably 11 ? Unpredictable

Characteristic Table:

2>Q [Q (t)] is referred to as the present state i.e. binary state
of the flip-flop before the application of a clock pulse.

- Given the present state Q and the inputs S and R, the
application of a single pulse in the CP input causes the flip-
flop to go to the next state, Q(t + 1).

SR " Characteristic equation
o el 1L The characteristic equation of the flip-flop specifies the value
0 g . s o of the next state as a function of the present state and the

inputs.
- —
Q{ ! II X——ll;] , Graphic symbol
- . — ¥ o The graphic symbol of the RS flip-flop consists of a
R rectangular-shape block with inputs S, R, and C. The outputs
QU+N=8S+RQ are Q and Q', where Q' is the complement of Q (except in the
SR=0 indeterminate state).
{c) Characteristic cquation (d) Graphic symbol

Indeterminate condition makes the circuit of Fig. above difficult to manage and it is seldom used in
practice. Nevertheless, it is an important circuit because all other flip-flops are constructed from it.

D Flip-Flop

One way to eliminate the undesirable condition of the indeterminate state in the RS flip-flop is to ensure
that inputs S and R are never equal to 1 at the same time. This is done in the D flip-flop shown in Fig.
below. The D flip-flop has only two inputs: D and CP. The D input goes directly to the S input and its
complement is applied to the R input.

e Aslongas CPis 0, the outputs of gates 3 and 4 are at the 1 level and the circuit cannot change state
regardless of the value of D.
e The Dinputis sampled when CP = 1.
o IfDis 1, the Qoutput goes to 1, placing the circuit in the set state.
o IfDis0, output Q goes to 0 and the circuit switches to the clear state.

Sequential Logic Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

CcP

(a) Logic diagram
D

)

0 1

. 1] 1 —iD Q —
2 Flip-Flop
e — f
o Qft+ 1) O‘[] {l _ —c gt—
1} 4] Reset Qi+ 1)=D
1 1 Set (b) Characteristic table (c) Characteristic equation (d) Graphic symbol

JK Flip-Flop

A JK flip-flop is a refinement of the RS flip-flop in that the indeterminate state of the RS type is defined in
the JK type. Inputs J and K behave like inputs S and R to set and clear the flip-flop, respectively. The input
marked J is for set and the input marked K is for reset. When both inputs J and K are equal to 1, the flip-
flop switches to its complement state, that is, if Q = 1, it switches to Q = 0, and vice versa.

A JK flip-flop constructed with two cross-coupled NOR gates and two AND gates is shown in Fig. below:

A JK flip-flop constructed with two cross-
FOOR coupled NOR gates and two AND gates.

e —>Output Q is ANDed with K and CP inputs

s so that the flip-flop is cleared during a clock

pulse only if Q was previously 1.

CP
! ->Similarly, output Q' is ANDed with J and

CP inputs so that the flop-flop is set with a

J \ = o clock pulse only when Q' was previously 1.
—

- Because of the feedback connection in
the JK flipflop, a CP pulse that remains in
{a) Logic diagram the 1 state while both Jand K are equal to 1

J will cause the output to complement again

X ———— and re i i
peat complementing until the pulse
@ 90 0l 11 10 goes back to 0.

eu+ D)

- To avoid this undesirable operation, the
o {1 j E clock pulse must have a time duration that

is shorter than the propagation delay time
of the flip-flop. This is a restrictive
1.4 requirement of JK which is eliminated with

Qi+ Ly=710 + KQ a master-slave or edge-triggered
construction.

=R =N L)
- - -k

i == =
O = Q=== O

(b) Characteristic table (¢} Characteristic equation
JK Flip-Flop

Sequential Logic Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

T Flip-Flop
The T flip-flop is a single-input version of the JK flip-flop and is obtained from the JK flip-flop when both
inputs are tied together. The designation T comes from the ability of the flip-flop to "toggle," or
complement, its state. Regardless of the present state, the flip-flop complements its output when the
clock pulse occurs while input T is 1. The characteristic table and characteristic equation show that:

= When T=0, Q(t+ 1) = Q that is, the next state is the same as the present state and no change

occurs.
= WhenT=1,thenQ(t+1)=Q) and the state of the flip-flop is complemented.

L

T
CP
e . o
|/
(a) Logic diagram T
¢ 1
J E Q 1
I Flip-Flop
T QU+ 1) 011 1
0 Q) No change QU+ 1) — TQ + TQ
1 o Complement (b) Characteristic table (¢) Characteristic equation

Triggering of Flip-Flops
The state of a flip-flop is switched by a momentary change in the input signal. This momentary change is
called a trigger and the transition it causes is said to trigger the flip-flop. Clocked flip-flops are triggered
by pulses. A pulse starts from an initial value of 0, goes momentarily to 1, and after a short time, returns
to its initial O value.
A clock pulse may be either positive or negative.
= A positive clock source remains at o during the interval between pulses and goes to 1 during the
occurrence of a pulse. The pulse goes through two signal transitions: from 0 to 1 and the return
from 1 to 0. As shown in Fig. below, the positive transition is defined as the positive edge and
the negative transition as the negative edge.
= This definition applies also to negative pulses.

Positive pulse Negative pulse

0 —
b T
|
Positive Negative Negative Positive
cdge cdge edge edge

Fig: Definition of clock pulse transition

Sequential Logic Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

The clocked flip-flops introduced earlier are triggered during the positive edge of the pulse, and the
state transition starts as soon as the pulse reaches the logic-1 level. The new state of the flip-flop may
appear at the output terminals while the input pulse is still 1. If the other inputs of the flip-flop change
while the clock is still 1, the flip-flop will start responding to these new values and a new output state
may occur.
Edge triggering is achieved by using a master -slave or edge triggered flip-flop as discussed in what
follows.
1. Master-slave Flip-Flop
A master-slave flip-flop is constructed from two separate flip-flops. One circuit serves as a master and
the other as a slave, and the overall circuit is referred to as a master slave flip-flop.
® RS master-slave flip-flop
It consists of a master flip-flop, a slave flip-flop, and an inverter. When clock pulse CP is 0, the
output of the inverter is 1. Since the clock input of the slave is 1, the flip-flop is enabled and
output Q is equal to Y, while Q' is equal to Y'. The master flip-flop is disabled because CP = 0.
When the pulse becomes 1, the information then at the external R and S inputs is transmitted to
the master flip-flop. The slave flip-flop, however, is isolated as long as the pulse is at its 1 level,
because the output of the inverter is 0. When the pulse returns to 0, the master flip-flop is
isolated; this prevents the external inputs from affecting it. The slave flip-flop then goes to the
same state as the master flip-flop.

5 Ky L 5 ¢
—1 C Master — C Slave
R R Y R g

P ‘De—

MASTER-SLAVE FLIF-FLOF

Fig: Logic diagram of RS master slave flip-flop
= JK Master-slave Flip-Flop
Master-slave JK flip-flop constructed with NAND gates is shown in Fig. below. It consists of two flip-
flops; gates 1 through 4 form the master flip-flop, and gates 5 through 8 form the slave flip-flop.
The information present at the J and K inputs is transmitted to the master flip-flop on the positive
edge of a clock pulse and is held there until the negative edge of the clock pulse occurs, after which
it is allowed to pass through to the slave flip-flop.

Operation:

o The clock input is normally 0, which prevents the J and K inputs from affecting the
master flip-flop.

o The slave flip-flop is a clocked RS type, with the master flip-flop supplying the inputs and
the clock input being inverted by gate 9.

o Whentheclockis0,Q=Y, andQ'=Y'".

o When the positive edge of a clock pulse occurs, the master flip-flop is affected and may
switch states.

o The slave flip-flop is isolated as long as the clock is at the 1 level

o When the clock input returns to 0, the master flip-flop is isolated from the J and K inputs
and the slave flip-flop goes to the same state as the master flip-flop.

Sequential Logic Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

ce

Fig: Clocked master-slave JK flip-flop

Point!

Consider a digital system containing many master-slave flip-flops, with the outputs of some flip-flops
going to the inputs of other flip-flops. Assume that clock-pulse inputs to all flip-flops are synchronized
(occur at the same time). At the beginning of each clock pulse, some of the master elements change
state, but all flip-flop outputs remain at their previous values. After the clock pulse returns to 0, some of
the outputs change state, but none of these new states have an effect on any of the master elements
until the next clock pulse. Thus, the states of flip-flops in the system can be changed simultaneously
during the same clock pulse, even though outputs of flip-flops are connected to inputs of flip-flops. This
is possible because the new state appears at the output terminals only after the clock pulse has
returned to O. Therefore, the binary content of one flip-flop can be transferred to a second flip-flop and
the content of the second transferred to the first, and both transfers can occur during the same clock
pulse.

2. Edge-Triggered Flip-Flop
Edge-triggered flip-flop (alternative to master-slave) synchronizes the state changes during clock-pulse
transitions. In this type of flip-flop, output transitions occur at a specific level of the clock pulse. When
the pulse input level exceeds this threshold level, the inputs are locked out and the flip-flop is therefore
unresponsive to further changes in inputs until the clock pulse returns to 0 and another pulse occurs.
Some edge-triggered flip-flops cause a transition on the positive edge of the pulse, and others cause a
transition on the negative edge of the pulse.
The logic diagram of a D-type positive-edge-triggered flip-flop is shown below. It consists of three basic
flip-flops. NAND gates 1 and 2 make up one basic flip-flop and gates 3 and 4 another. The third basic flip-
flop comprising gates 5 and 6 provides the outputs to the circuit. Inputs S and R of the third basic flip-
flop must be maintained at logic-1 for the outputs to remain in their steady state values.

= WhenS=0andR =1, the output goes to the set state with Q = 1.

= WhenS=1andR =0, the output goes to the clear state with Q = 0.
Inputs S and R are determined from the states of the other two basic flip-flops. These two basic flip-flops
respond to the external inputs D (data) and CP (clock pulse).

Sequential Logic Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

1 3 ¢
or—t
3 p R 6 @
4
D

Fig: D-type positive-edge-triggered flip-flop

Operation:

= Gates 1to 4 are redrawn to
show all possible transitions.
Outputs S and R from gates 2
and 3 go to gates 5 and 6

= Fig (a) shows the binary values

) 1)

3 * R 3 at the outputs of the four gates
when CP = 0. Input D may be
equal to 0 or 1. In either case, a

4 1 4 0 CP of 0 causes the outputs of
gates 2 and 3 to go to 1, thus
making S = R = 1, which is the

CP =0 ——t CP=0 —4

(a) With CP=0 condition for a steady state
output.
! 0 = WhenCP=1
o If D=1thenS changes

to 0, but R remains at

2 L ¢ 1, which causes the
output of the flip-flop

=1— r=1—+ Qtogoto 1 (set

3):: 0 . state).
o IfD=0thenS=1and

R = 0. Flip-flop goes to
clear state (Q = 0).

{b) With CP=1

Sequential Logic Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

Direct Inputs

Flip-flops available in IC packages sometimes provide special inputs for setting or clearing the flip-flop
asynchronously. These inputs are usually called direct preset and direct clear. They affect the flip-flop on
a positive (or negative) value of the input signal without the need for a clock pulse. These inputs are
useful for bringing all flip-flops to an initial state prior to their clocked operation.

Example: After power is turned on in a digital system, the states of its flip-flops are indeterminate. A
clear switch clears all the flip-flops to an initial cleared state and a start switch begins the system's
clocked operation. The clear switch must clear all flip-flops asynchronously without the need for a pulse.

—The direct-clear input has a small circle to indicate that, | l
normally, this input must be maintained at 1. If the clear n
input is maintained at 0, the flip-flop remains cleared, Clear ?{, A ?
regardless of the other inputs or the clock pulse. | T l
->The function table specifies the circuit operation. The X's P
are don't-care conditions, which indicate that a 0 in the Function table
direct.—clear.input disables aII.other inpyts. Only when the o Inputs T Du_tpufs
clear input is | would a negative transition of the clock have - i
an effect on the outputs. (lear Clock 4 K o ,Q'
—>The outputs do not change if J = K = O. The flip-flop 0 X X X 0 1
toggles, or complements, when J = K = I. Some flip-flops may 1 + a 0 No change
also have a direct-preset input, which sets the output Q to | 1 + 0 ! 0 !
(and Q' to 0) asynchronously. 1 i | Q 1 D

! ¢ b b i Toade

Fig: JK flip-flop with direct clear

Analysis of Clocked Sequential Circuits

The behavior of a sequential circuit is determined from the inputs, the outputs, and the state of its flip-
flops. The outputs and the next state are both a function of the inputs and the present state. The
analysis of a sequential circuit consists of obtaining a table or a diagram for the time sequence of
inputs, outputs, and internal states. It is also possible to write Boolean expressions that describe the
behavior of the sequential circuit.

A logic diagram is recognized as a clocked sequential circuit if it includes flip-flops. The flip-flops may be
of any type and the logic diagram may or may not include combinational circuit gates.

I will discuss analysis process, along with different terms, with the help of specific example.
Example

An example of a clocked sequential circuit is shown in Fig. below. The circuit consists of two D flip-flops
A and B, an input x, and an output y.

Sequential Logic Page 10

By Bishnu Rawal
Downloaded from CSIT Tutor

x

D Q A

>
Q1 a'
) D Q B

>
CP Qr BJ
E | J g

1l>c

Fig: Example of sequential circuit

State Equations
A state equation is an algebraic expression that specifies the condition for a flip-flop state transition. The
left side of the equation denotes the next state of the flip-flop and the right side of the equation is a
Boolean expression that specifies the present state and input conditions that make the next state equal
to 1.
In above example, D inputs determine the flip-flop’s next state, so it is possible to write a set of next-
state equations for the circuit:

At + 1) = A(t)x(t) + B(t)x(t)

B(t+1)=A"(t)x(t)
Can be written conveniently as:

A(t+1) = Ax + Bx

B(t+1)=A'x
Similarly, the present-state value of the output y can be expressed algebraically as follows:

y(t) = [A(t) + B(t)]x'(t)
Removing the symbol (t) for the present state, we obtain the output Boolean function:

y = (A + B)x'

State table
The time sequence of inputs, outputs, and flip-flop states can be enumerated in a state table. The state
table for the example circuit above is shown in the table below.

Sequential Logic Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

Present Next
_State Input State Output —>The table consists of four sections:
A B . A B Present state: shows the states of flip-flops A and B at any given time t
S A Input: gives a value of x for each possible present state
00 0 00 0 IYext state: shows the states of the flip-flops one clock period later at
00 1 01 0 time t+1.
Output: gives the value of y for each present state.
0 1 0 00 |
01 1 It 0 - The derivation of a state table consists of first listing all possible
1 0 0 0 0 | binary combinations of present state and inputs.
1 0 | 1 0 0
|1 0 0 0 i —>Next state and output column is derived from the state equations.
I 1 1 1 0 0

This table can alternatively be represented as:

Next State Output
Present State x=0 X=1 X = 0”7 X = l
AB AB AB ¥ Y
00 00 01 0 0
4] 00 11 1 0
10 00 10 1 0
11 00 10 1 Y]

State Diagram

The information available in a state table can be represented graphically in a state diagram. In this type
of diagram, a state is represented by a circle, and the transition between states is indicated by directed
lines connecting the circles.

10

—>The binary number inside each circle identifies the state of the flip-flops.
—>The directed lines are labeled with two binary numbers separated by a
slash viz. (input value/output value) during the present state. E.g. directed
line from state 00 to 01 is labeled 1/0, meaning that when the sequential
circuit is in the present state 00 and the input is 1, the output is 0. After a
clock transition, the circuit goes to the next state 01.

- A directed line connecting a circle with itself indicates that no change of
state occurs.

- There is no difference between a state table and a state diagram except
in the manner of representation. The state table is easier to derive from a
given logic diagram and the state diagram follows directly from the state
table. The state diagram gives a pictorial view of state transitions and is the
form suitable for human interpretation of the circuit operation.

Fig: State diagram for our example

State Reduction and assignment

The analysis of sequential circuits starts from a circuit diagram and culminates in a state table or
diagram. The design of a sequential circuit starts from a set of specifications and culminates in a logic
diagram. Any design process must consider the problem of minimizing the cost of the final circuit
(reduce the number of gates and flip-flops during the design).

Sequential Logic Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

State Reduction
The reduction of the number of flip-flops in a sequential circuit is referred to as the state-reduction
problem. State-reduction algorithms are concerned with procedures for reducing the number of states
in a state-table while keeping the external input-output requirements unchanged.
Example
Consider a sequential circuit with following specification. States marked inside the circles are denoted by
letter symbols instead of by their binary values.

0/0 a

0/0

Consider the input sequence 01010110100 starting from the initial state a. Each input of 0 or 1 produces
an output of 0 or 1 and causes the circuit to go to the next state. From the state diagram, we obtain the
output and state sequence for the given input sequence as follows:

state a a b < d e f f 8 f g a In each column, we have the present state,
input 0 1 0 1 0 1 1] 1 0 0 input value, and output value. The next
output 0 0 0 0 0 1 1 0 1 0 0 state is written on top of the next column.

Algorithm: "Two states are said to be equivalent if, for each member of the set of inputs, they give

exactly the same output and send the circuit either to the same state or to an equivalent state. When

two states are equivalent, one of them can be removed without altering the input-output relationships."
e First, we need the state table (from state diagram above)

Next State Qutput
Present State x=0 X =] x=0 x =1
a a b 0 0
b ¢ d 0 0
¢ a d 0 0
d € f" 0 1
€ a b 0 1
/ g / 0 1
g a f 0 1

e Look for two present states that go to the same next state and have the same output for both
input combinations. States g and e are two such states: they both go to states a and f and have

Sequential Logic Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

outputs of 0 and 1 for x =0 and x = 1, respectively. Therefore, states g and e are equivalent; one
can be removed.

—E?EE -------------- {-3 ?_tpft —>The row with present state g is crossed
PresencStale x=0 x=1 X=0 X=1] outandstate gis replaced by state e
a a b 0 0 each time it occurs in the next-state
b ¢ d 0 0 columns.
¢ u d 0 0 ->Present state f now has next states e
o . fd 0 { and f and outputs 0 and 1 for x= 0 and x
e a /a‘ 0 1 =1, respectively.
/ ge / 0 | - The same next states and outputs
appear in the row with present state d.
¢ a f 0 1 Therefore, states f and d are equivalent;
state f can be removed and replaced by d

e Final reduced table and state diagram for the reduced table consists of only five states.

Next state Qutput
Present State x=0 x=1 xX=0 x=1
a a b 0 0
b c d 0 0
c a d 0 0
d e d 0 1
e a d 0 1

State Assignment

The cost of the combinational-circuit part of a sequential circuit can be reduced by using the known
simplification methods for combinational circuits. However, there is another factor, known as the state-
assignment problem that comes into play in minimizing the combinational gates. State-assignment
procedures are concerned with methods for assigning binary values to states in such a way as to reduce
the cost of the combinational circuit that drives the flip-flops.

Consider a example shown in state reduction, 3 examples of possible binary assignments are shown in
Table below for the five states of the reduced table. Assignment 1 is a straight binary assignment for the
sequence of states from a through e. The other two assignments are chosen arbitrarily. In fact, there are
140 different distinct assignments for this circuit.

The binary form of the state table is used to derive the combinational-circuit part of the sequential
circuit. The complexity of the combinational circuit obtained depends on the binary state assignment
chosen.

Next State Output

State Assignment] Assignment 2 Assignment 3 Present state x=0 x=1 x=0 x=1

a 001 000 000 001 001 010 1] 0

b 010 010 100 010 011 100 0 0

€ 011 0!t 010 011 001 100 0 0

e 100 101 101 100 101 100 0 1

€ 101 111 011 101 001 100 0 1
Fig: 3 possible binary sate assignments Fig: Reduced state table with binary assignment 1
Sequential Logic Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

Excitation Tables
A table that lists required inputs for a given change of state (Present to next-state) is called an excitation

table.
Flip-Flop Excitation Tables
Qin a(t + 1] s R QY Qit+ N J K
e T — The required input conditions for
0 0 0 X 0 0 0 X each of the four transitions are
0 1 1 0 0 1 X derived from the information
1 0 0 ! 1 0 X 1 available in the characteristic table.
1 1 X 0 1 1 X 0 The symbol X in the tables
(a)\}?S) JK represents a don't-care condition,
i.e., it does not matter whether the
inputis 1 or 0.
ain ait+ 1) D an Qi+ 1) T
0 0 0 0 0 0
0 1 1 0 1 1
1 0 0 1 0 1
1 1 1 1 1 0
cyD T

Design Procedure

The design of a clocked sequential circuit starts from a set of specifications (state table) and ends in a
logic diagram or a list of Boolean functions from which the logic diagram can be obtained.

Procedure:

The procedure can be summarized by a list of consecutive recommended steps:

(1)

(2)
(3)

(4)
(5)
(6)
(7)
(8)

(9)

State the word description of the circuit behavior. It may be a state diagram, a timing diagram,
or other pertinent information.

From the given information about the circuit, obtain the state table.

Apply state-reduction methods if the sequential circuit can be characterized by input-output
relationships independent of the number of states.

Assign binary values to each state if the state table obtained in step 2 or 3 contains letter
symbols.

Determine the number of flip-flops needed and assign a letter symbol to each.

Choose the type of flip-flop to be used.

From the state table, derive the circuit excitation and output tables.

Using the map or any other simplification method, derive the circuit output functions and the
flip-flop input functions.

Draw the logic diagram.

Sequential Logic Page 15

By Bishnu Rawal
Downloaded from CSIT Tutor

Example: Design Procedure

Procedure step: (1) and (2) \

e The state diagram consists of four states with binary
values already assigned.

e Directed lines contain single binary digit without a
slash, we conclude that there is one input variable
and no output variables. (The state of the flip-flops
may be considered the outputs of the circuit).

e The two flip-flops needed to represent the four

states are designated A and B.

The input variable is designated x.

Fig: State-diagram for design example

Next State
Present State x=0 x=1 Procedure step: (3)
The state table for this circuit, derived
A B A B A g from the state diagram. Note that there
is no output section for this circuit.
0 0 0 0 0 1
0 1 1 0 0 1
1 0 1 0 1 1
1 i 1 ; 0 0
Fig: State Table
Inputs of Qutputs of \
_Combinational Circuit Combinational Circuit In the derivation of the
Prosent excitation table, present state
Siate Input Next State Flip-Flop Inputs and input variables are
A 5 '—K‘— _,q 5 J;_ A B 5 arranged in the form of a
B e truth table.
0 0 0 0 0 0 X 0 X e JKtypeis used here. (PS
0 0 1 0 1 0o X 1 X (6))
0 1 0 1 0 1 X X I e Since JK flip-flops are
0 : I 0 1 0 X X 0 used we need c.olumns
| 0 0 0 0 for the J and K inputs of
! X 0 X flip-flops A (denoted by
Lo t L. x 0 1 X JAand kA)and B
1 0 11 X 0 X 0 (denoted by J8 and KB).
1 1 | 0O 0 X 1 X |

Sequential Logic

Page 16

By Bishnu Rawal

Downloaded from CSIT Tutor

A’ A B B
o 144 g Q
KA J K A
| T .
KA |14 kB |18
+ External
A — outputs
(none)
A Combinational
B cireuit
B X
;xnemal
inputs
Bx B
4 00 01 "11 10
: , EGE
i
I
A1l X X | X X | l_..l.}
X
JA = Bx' KA = Bx
— —
x| x x| i
1| X X X l_X___l_J
JB = x KB =(d2x)
A
B
0’ Q Q' Q
K A T K A J
L l cr

e The inputs are the variables A, B, and

Sequential Logic

By Bishnu Rawal

->Shows the two JK flip-flops needed fom

the circuit and a box to represent the
combinational circuit.

—>From the block diagram, it is clear that
the outputs of the combinational circuit go
to flip-flop inputs and external outputs (if
specified).

—The inputs to the combinational circuit
are the external inputs and the present

state values of the flip-flops. /

Derivation of simplified Boolean \

functions for the combinational
circuit.

The information from the truth table
is transferred into the maps.

x; the outputs are the variables JA,

KA, JB, and KB. /

The logic diagram is drawn in by side and
consists of two flip-flops, two AND gates,
one exclusive-NOR gate, and one inverter.

Page 17

Downloaded from CSIT Tutor

Unit 7
Registers, Counters and Memory units

A circuit with only flip-flops is considered a sequential circuit even in the absence of combinational
gates. Certain MSI circuits that include flip-flops are classified by the operation that they perform rather
than the name sequential circuit. Two such MSI components are registers and counters.

Registers
e Aregister is a group of binary cells suitable for holding binary information. A group of flip-flops
constitutes a register.
o An n-bit register has a group of n flip-flops and is capable of storing any binary information
containing n bits.
e |n addition to the flip-flops, a register may have combinational gates that perform certain data-
processing tasks.
Various types of registers are available in MSI circuits. The simplest possible register is one that consists
of only flip-flops without any external gates. Following fig. shows such a register constructed with four
D-type flip-flops and a common clock-pulse input.
e The clock pulse input, CP, enables all flip-flops, so that the information presently available at the
four inputs can be transferred into the 4-bit register.
e The four outputs can be sampled to obtain the information presently stored in the register.

Ay A, A, 4,
Q Q Q 2
A D A D A D A D
CcP
I, I I /

Fig: 4-bit register
Register with parallel load
The transfer of new information into a register is referred to as loading the register. If all the bits of the
register are loaded simultaneously with a single clock pulse, we say that the loading is done in parallel. A
pulse applied to the CP input of the register of Fig. above will load all four inputs in parallel. When CP
goes to 1, the input information is loaded into the register. If CP remains at 0, the content of the register
is not changed. Note that the change of state in the outputs occurs at the positive edge of the pulse.

Shift Registers

e A register capable of shifting its binary information either to the right or to the left is called a
shift register. The logical configuration of a shift register consists of a chain of flip-flops
connected in cascade, with the output of one flip-flop connected to the input of the next flip-
flop. All flip-flops receive a common clock pulse that causes the shift from one stage to the next.

e The Shift Register is used for data storage or data movement and are used in calculators or
computers to store data such as two binary numbers before they are added together, or to
convert the data from either a serial to parallel or parallel to serial format. The individual data

Registers, Counters and Memory units Page 1

By Bishnu Rawal
Downloaded from CSIT Tutor

latches that make up a single shift register are all driven by a common clock (Clk) signal making
them synchronous devices. Shift register IC's are generally provided with a clear or reset
connection so that they can be "SET" or "RESET" as required.

Generally, shift registers operate in one of four different modes with the basic movement of data
through a shift register being:

e Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time, with
the stored data being available in parallel form.

e Serial-in to Serial-out (SISO) - the data is shifted serially "IN" and "OUT" of the register, one bit
at a time in either a left or right direction under clock control.

e Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register simultaneously and
is shifted out of the register serially one bit at a time under clock control.

e Parallel-in to parallel-out (PIPO) - the parallel data is loaded simultaneously into the register,
and transferred together to their respective outputs by the same clock pulse.

The effect of data movement from left to right through a shift register can be presented graphically as:
Parallel Data Output

A

£l e

- —> | S)!

SB

/ L _
Serial p Q Srial
Data ~tsp Data
Input 10t | 1ot | bt | 1-bit Output

™

o—sff

1sB T T TLSB

Parallel Data Input
Also, the directional movement of the data through a shift register can be either to the left, (left shifting)
to the right, (right shifting) left-in but right-out, (rotation) or both left and right shifting within the same
register thereby making it bidirectional.

Serial-in to Parallel-out (SIPO)
4-bit Parallel Data Qutput

Q_;_ QE Q: Qr-
_Sél D Q _T-_: D Q T_-= D Q _T-_: D CJ
aria
pamin | FFA FFB FFC FFD
—ICLK —{CLK —CLK —CLK
CLR CIR CLR CLR
Clear 1 [I I
Clock |
Fig: 4-bit Serial-in to Parallel-out Shift Register
Registers, Counters and Memory units Page 2

By Bishnu Rawal
Downloaded from CSIT Tutor

Operation

Let’s assume that all the flip-flops (FFA to FFD) have just been RESET (CLEAR input) and that all
the outputs Q, to Qp are at logic level "0" i.e., no parallel data output.

If a logic "1" is connected to the DATA input pin of FFA then on the first clock pulse the output of
FFA and therefore the resulting Qa will be set HIGH to logic "1" with all the other outputs still
remaining LOW at logic "0".

Assume now that the DATA input pin of FFA has returned LOW again to logic "0" giving us one
data pulse or 0-1-0.

The second clock pulse will change the output of FFA to logic "0" and the output of FFB and Qg
HIGH to logic "1" as its input D has the logic "1" level on it from Qa. The logic "1" has now moved
or been "shifted" one place along the register to the right as it is now at Q.. When the third
clock pulse arrives this logic "1" value moves to the output of FFC (Q) and so on until the arrival
of the fifth clock pulse which sets all the outputs Q4 to Qp back again to logic level "0" because
the input to FFA has remained constant at logic level "0".

The effect of each clock pulse is to shift the data contents of each stage one place to the right,
and this is shown in the following table until the complete data value of 0-0-0-1 is stored in the
register.

Clock Pulse No QA QB Qc QD
0 0 0 0 0
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
- 0 0 0 1
5 0 0 0 0

[
1
1

o 0 |J
[
1
1
1

|
|
|
a |

a 0

- Commonly available SIPO IC's include the standard 8-bit 74LS164 or the 74L5594.

Serial-in to Serial-out (SISO)

This shift register is very similar to the SIPO above, except were before the data was read directly in a
parallel form from the outputs Qs to Qp, this time the data is allowed to flow straight through the
register and out of the other end. Since there is only one output, the DATA leaves the shift register one
bit at a time in a serial pattern, hence the name Serial-in to Serial-Out Shift Register or SISO. The SISO

Registers, Counters and Memory units Page 3

By Bishnu Rawal
Downloaded from CSIT Tutor

shift register is one of the simplest of the four configurations as it has only three connections, the serial
input (SI) which determines what enters the left hand flip-flop, the serial output (SO) which is taken
from the output of the right hand flip-flop and the sequencing clock signal (Clk). The logic circuit diagram
below shows a generalized serial-in serial-out shift register.

1 1
0 0o

Serial

DEth ol lelD al»lp oD al»a
2% 1 FRA FFB FEC FFED Serial

Data out
CLK CLK CLK CLK
Cleck [

Fig: 4-bit Serial-in to Serial-out Shift Register
What's the point of a SISO shift register if the output data is exactly the same as the input data?
2> Well this type of Shift Register also acts as a temporary storage device or as a time delay device for
the data, with the amount of time delay being controlled by the number of stages in the register, 4, 8,
16 etc or by varying the application of the clock pulses.
- Commonly available IC's include the 74HC595 8-bit Serial-in/Serial-out Shift Register all with 3-state
outputs.

Parallel-in to Serial-out (PISO)

The Parallel-in to Serial-out shift register acts in the opposite way to the serial-in to parallel-out one
above. The data is loaded into the register in a parallel format i.e. all the data bits enter their inputs
simultaneously, to the parallel input pins P, to P of the register. The data is then read out sequentially
in the normal shift-right mode from the register at Q representing the data present at P, to Pp. This data
is outputted one bit at a time on each clock cycle in a serial format. It is important to note that with this
system a clock pulse is not required to parallel load the register as it is already present, but four clock
pulses are required to unload the data.

1 Q Q ol Ql—s0
m 4 3 — E_ 3_ Sarnial
FFA FFB FEC FFD Data out
CLK CLK CLK CLK
T
Clock
an Pe Pa F;-J

4-bit Parallel Data Input
Fig: 4-bit Parallel-in to Serial-out Shift Register
- Advantage: As this type of shift register converts parallel data, such as an 8-bit data word into serial
format, it can be used to multiplex many different input lines into a single serial DATA stream which can
be sent directly to a computer or transmitted over a communications line.
->Commonly available IC's include the 74HC166 8-bit Parallel-in/Serial-out Shift Registers.

Parallel-in to Parallel-out (PIPO)

The final mode of operation is the Parallel-in to Parallel-out Shift Register. This type of register also acts
as a temporary storage device or as a time delay device similar to the SISO configuration above. The
data is presented in a parallel format to the parallel input pins P, to Py and then transferred together
directly to their respective output pins Qa to Qp by the same clock pulse. Then one clock pulse loads and
unloads the register. This arrangement for parallel loading and unloading is shown below.

Registers, Counters and Memory units Page 4

By Bishnu Rawal
Downloaded from CSIT Tutor

4 bit Parallel Data Output
la, Qc Q: Q.

) el el el

FFA FFB FFC FFD
CLK CLK CLK CLK

K
2
3]

P P C ':E P.':

4-bit Parallel Data Input
Fig: 4-bit Parallel-in to Parallel-out Shift Register

The PIPO shift register is the simplest of the four configurations as it has only three connections, the
parallel input (Pl) which determines what enters the flip-flop, the parallel output (PO) and the
sequencing clock signal (Clk). Similar to the Serial-in to Serial-out shift register, this type of register also
acts as a temporary storage device or as a time delay device, with the amount of time delay being varied
by the frequency of the clock pulses. Also, in this type of register there are no interconnections between
the individual flip-flops since no serial shifting of the data is required.

Ripple Counters (Asynchronous Counters)

e MSI counters come in two categories: ripple counters and synchronous counters.

e In a ripple counter (Asynchronous Counter); flip-flop output transition serves as a source for
triggering other flip-flops. In other words, the CP inputs of all flip-flops (except the first) are
triggered not by the incoming pulses, but rather by the transition that occurs in other flip-flops.

e Synchronous counter, the input pulses are applied to all CP inputs of all flip-flops. The change of
state of a particular flip-flop is dependent on the present state of other flip-flops.

Binary Ripple Counter

A binary ripple counter consists of a series connection of complementing flip-flops (T or JK type), with
the output of each flip-flop connected to the CP input of the next higher-order flip-flop. The flip-flop
holding the least significant bit receives the incoming count pulses. The diagram of a 4-bit binary ripple
counter is shown in Fig. below. All Jand K inputs are equal to 1.

Registers, Counters and Memory units Page 5

By Bishnu Rawal
Downloaded from CSIT Tutor

All Jand K inputs are equal to 1. The small circle
in the CP input indicates that the flip-flop
complements during a negative-going transition
or when the output to which it is connected goes
from 1to 0.

Count pulses

To understand the operation of the binary counter,

K refer to its count sequence given in Table.

e Itis obvious that the lowest-order bit A; must be
complemented with each count pulse. Every time

| A; goes from 1to 0O, it complements A,. Every time
J Q Ay A, goes from 1to 0O, it complements A3, and so on.
4 e For example: take the transition from count 0111
to 1000. The arrows in the table emphasize the
K transitions in this case. A; is complemented with
the count pulse. Since A; goes from 1to 0, it
| triggers A, and complements it. As a result, A, goes
from 1 to 0, which in turn complements As. A; now
e A4 goes from 1 to 0, which complements A,. The
—cp> output transition of A,, if connected to a next
X stage, will not trigger the next flip-flop since it goes

from 0 to 1. The flip-flops change one at a time in
rapid succession, and the signal propagates
through the counter in a ripple fashion.

Logic-1

Fig: 4-bit binary ripple counter

Count Sequence

Ay Az Az A Conditions far Camplementing Flip-Flops
0 0 0 0 Complement A,
0 0 0 1 Complement A, A, will go from 1 to 0 and complement A
0 0 1 0 Complement A,
0 0 1 | Complement A, Ay will go from 1 to 0 and complement A;;
(‘\ (\\L Az will go from 1 to 0 and complement A,
0 1 0 0 Complement A,
0 1 0 1 Complement A, Ay will go from 1 to 0 and complement A
0 1 1 0 Complement A,
0 1 1 1 Complement A, A; will go from 1 to 0 and complement A»;
l Az will go from 1 to 0 and complement As;
N (\ LN Az will go from 1 to 0 and complement A«
1 0 0 0 and soon . . .
Registers, Counters and Memory units Page 6

By Bishnu Rawal
Downloaded from CSIT Tutor

BCD Ripple Counter (Decade Counter)

A decimal counter follows a sequence of ten states and returns to 0 after the count of 9. Such a counter
must have at least four flip-flops to represent each decimal digit, since a decimal digit is represented by
a binary code with at least four bits. The sequence of states in a decimal counter is dictated by the

binary code used to represent a decimal digit.

\

Y
L

~—

Count pulses ——————C>

[o]
w

Logic-1
Fig: BCD ripple counter

™~

. V'
DO ——=[0001 nm} - ((M)]] L0
_// _/ \..._/ _/})

If BCD is used, the sequence of states
is as shown in the state diagram. This
is similar to a binary counter, except
that the state after 1001 (code for
decimal digit 9) is 0000 (code for
decimal digit 0).

e The four outputs are designated by the
letter symbol Q with a numeric subscript
equal to the binary weight of the
corresponding bit in the BCD code.

e The flip-flops trigger on the negative edge.

e Aripple counter is an asynchronous
sequential circuit and cannot be described
by Boolean equations developed for
describing clocked sequential circuits.
Signals that affect the flip-flop transition
depend on the order in which they change
from 1to 0.

e Operation:

When CP input goes from 1 to 0, the flip-flop is

setif) =1, is cleared if K =1, is complemented if

J=K=1, and s left unchanged if] = K=0. The

following are the conditions for each flip-flop

state transition:

1. Q;iscomplemented on the negative edge
of every count pulse.

2. Q,iscomplemented if Qs = 0and Q; goes
from1to 0. Q,is cleared if Qg =1 and Q;
goes from 1 to 0.

3. Qqis complemented when Q, goes from 1
to 0.

4. Qgis complemented when Q; Q, =11 and

Q; goes from 1 to 0. Qg is cleared if either Q4

or N.ic 0 and 0. snes from 1 ta N

BCD Counter above counts from 0 to 9. To count in decimal from 0 to 99, we need a two-decade
counter. To count from 0 to 999, we need a three-decade counter.

Registers, Counters and Memory units

Page 7

By Bishnu Rawal
Downloaded from CSIT Tutor

Qa Q-t Qz Q1 Qg Qa Qz Q| QE Q4 Qz Q|

Multiple-decade counters can
be constructed by connecting
BCD counters in cascade, one

BCD BCD BCD Count

for each decade.
Counter Counter Counter [+ pulses

107 digic 10% digit 10% digit
Fig: Block diagram of a three-decade decimal BCD counter

Synchronous Counters

Synchronous counters are distinguished from ripple counters in that clock pulses are applied to the CP
inputs of all flip-flops. The common pulse triggers all the flip-flops simultaneously, rather than one at a
time in succession as in a ripple counter. The decision whether a flip-flop is to be complemented or not
is determined from the values of the J and K inputs at the time of the pulse. If J = K = 0, the flip-flop
remains unchanged. If J = K = 1, the flip-flop complements.

Binary Counter

/ 2 4 e The design of synchronous binary counters is so
—p simple that there is no need to go through a rigorous
Count cnable X sequential-logic design process. In a synchronous
binary counter, the flip-flop in the lowest-order
position is complemented with every pulse. This
means that it’s J and K inputs must be maintained at
L logic-1. A flip-flop in any other position is
J 0 4, complemented with a pulse provided all the bits in
the lower-order positions are equal to 1, because the
—r lower-order bits (when all 1's) will change to 0's on

K the next count pulse.
e Synchronous binary counters have a regular pattern
and can easily be constructed with complementing
t flip-flops and gates. The regular pattern can be
clearly seen from the 4-bit counter depicted in Fig by

J 2 A; side.

_— N e The CP terminals of all flip-flops are connected to a
common clock-pulse source. The first stage A; has its
K Jand K equal to 1 if the counter is enabled. The other
J and K inputs are equal to 1 if all previous low-order

bits are equal to 1 and the count is enabled. The
[chain of AND gates generates the required logic for
the J and K inputs in each stage. The counter can be

J) A .
¢ extended to any number of stages, with each stage
— having an additional flip-flop and an AND gate that
X gives an output of 1 if all previous flip-flop outputs
are 1's.
@— To next stage
cp
Fig: 4-bit Synchronous Binary Counter
Registers, Counters and Memory units Page 8

By Bishnu Rawal
Downloaded from CSIT Tutor

Binary Up-Down Counter
Up ~[

Down

U

e Inasynchronous count-down binary
counter, the flip-flop in the lowest-order
position is complemented with every
pulse. A flip-flop in any other position is
complemented with a pulse provided all L
the lower-order bits are equal to 0.

Example: if the present state of a 4-bit count-

down binary counter is A4AzA,A; = 1100, the

next count will be 1011. A; is always
complemented. A; is complemented because
the present state of A; = 0. Az is complemented

because the present state of A;A; = 00. But A,

) >— o 4
g 1./
)

is not complemented because the present
state of A3A,A; = 100, which is not an all-0's L
condition. T o 4,
e Same as Binary counter except that the
inputs to the AND gates must come from >
the complement outputs Q' and not from o
the normal outputs Q of the previous flip-)|
flops.
e The two operations can be combined in

one circuit. A binary counter capable of

counting either up or down is shown in Fig.

by side. T Q4
o When up =1, the circuit counts up,

since the T inputs receive their g

signals from the values of the or—
previous normal outputs of the o)

flip-flops Fig: 4-bit up-down counter

o Whendown =1andup =0, the
circuit counts down

BCD Counter

A BCD counter counts in binary-coded decimal from 0000 to 1001 and back to 0000. Because of the
return to 0 after a count of 9, a BCD counter does not have a regular pattern as in a straight binary
count. To derive the circuit of a BCD synchronous counter, it is necessary to go through a design
procedure discussed earlier.

The excitation for the T flip-flops is obtained from the present and next state conditions. An output y is
also shown in the table. This output is equal to 1 when the counter present state is 1001. In this way, y
can enable the count of the next-higher-order decade while the same pulse switches the present decade

Registers, Counters and Memory units Page 9

By Bishnu Rawal
Downloaded from CSIT Tutor

from 1001 to 0000. The flip-flop input functions from the excitation table can be simplified by means of
maps. The unused states for minterms 10 to 15 are taken as don't-care terms.

Present State Next State Qutput Flip-Flop Inputs

[0 Oy o5 aQ, Qs Q. (o] Q ¥ 7Oy Q, T, TO
0 0 0 0 0 0 0 1 i 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 1
0 0 I Q 0 0 1 1 0 0 0 0 1
0 0 1 ! Q 1 0 0 0 0 1 1 |
0 1 0 0 0 1 0 i 0 0 0 0] l
0 1 0 ! 0 | 1 0 0 0 0 1 l
0 1 1 0 0 | 1 1 0 0 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 1 4] 0 0 0 1
1 D 0 1 0 0 U 0 1 | 0 0 1

The simplified functions are:

TQ; =1

TQ,=Qs'Q;

TQ, = QQ,

TQs = QgQ; + QQ,Q;

y=QsQ;
The circuit can be easily drawn with four T flip-flops, five AND gates, and one OR gate. Synchronous BCD
counters can be cascaded to form a counter for decimal numbers of any length.

Timing Sequences

The sequences of operations in a digital system are specified by a control unit. The control unit that
supervises the operations in a digital system would normally consist of timing signals that determine the
time sequence in which the operations are executed. The timing sequences in the control unit can be
easily generated by means of counters or shift registers.

Word-Time Generation

The control unit in a serial computer must generate a word-time signal that stays on for a number of
pulses equal to the number of bits in the shift registers. The word-time signal can be generated by
means of a counter that counts the required number of pulses.

Example:
e Assume that the word-time signal

Start s 0 W'E'de’l'lmt’ to be generated must stay on for a
control period of eight clock pulses.

CP""""OP e Fig. shows a counter circuit that

\ accomplishes this task.
L/ Stop e Initially, the 3-bit counter is
cleared to 0. A start signal will set
_ Count enable flip-flop Q. The output of this flip-
CP ——1 3-bit counter |- flop supplies the word-time
control and also enables the

{a} Circuit diagram counter. After the count of eight

pulses, the flip-flop is reset and Q
goes to 0. /

=

Registers, Counters and Memory units Page 10

By Bishnu Rawal
Downloaded from CSIT Tutor

The timing diagram demonstrates the operation of
the circuit. The start signal is synchronized with the
clock and stays on for one clock-pulse period. After
Qs set to 1, the counter starts counting the clock
pulses. When the counter reaches the count of 7
(binary 111), it sends a stop signal to the reset
input of the flip-flop. The stop signal becomes a 1
after the negative-edge transition of pulse 7. The
next clock pulse switches the counter to the

000 state and also clears Q. Now the counter is

disabled and the word-time signal stays at 0. /

Start——r_I

Stop

Q—I:I— Word time = 8 pulscs—J——-

{b) Timing diagram

Timing Signals
The control unit in a digital system that operates in the parallel mode must generate timing signals that
stay on for only one clock pulse period. Timing signals that control the sequence of operations in a
digital system can be generated with a shift register or a counter with a decoder. A ring counter is a
circular shift register with only one flip-flop being set at any particular time; all others are cleared. The
single bit is shifted from one flip-flop to the other to produce the sequence of timing signals.

EEE LI

Shift
e || R]D —_—

{a) Ringcounter (initial value = 1000)

T, I, T, T

[111 S

2xd

decoder
)
3
Ty ——
E:aubr;; 2-bit counter
(b) Counterand decoder (c) Sequence of four timing signals

Fig: Generation of Timing Signals

e Figure (a) shows a 4-bit shift register connected as a ring counter. The initial value of the register is 1000,
which produces the variable T,. The single bit is shifted right with every clock pulse and circulates back
from T; to T,. Each flip-flop is in the 1 state once every four clock pulses and produces one of the four
timing signals shown in Fig (c). Each output becomes a 1 after the negative-edge transition of a clock pulse
and remains 1 during the next clock pulse.

e The timing signals can be generated also by continuously enabling a 2-bit counter that goes through four
distinct states. The decoder shown in Fig. (b) decodes the four states of the counter and generates the
required sequence of timing signals.

Registers, Counters and Memory units Page 11

By Bishnu Rawal
Downloaded from CSIT Tutor

Point!

e To generate 2" timing signals, we need either a shift register with 2" flip-flops or an n-bit counter
together with an n-to-2"-line decoder. For example, 16 timing signals can be generated with a 16-bit
shift register connected as a ring counter or with a 4-bit counter and a 4-to-16-line decoder.

e Itis also possible to generate the timing signals with a combination of a shift register and a decoder.
In this way, the number of flip-flops is less than a ring counter, and the decoder requires only 2-
input gates. This combination is sometimes called a Johnson counter. (Oh ya, we r studying it in what

follows...®)

Johnson Counter

A Johnson counter is a k-bit switch-tail ring counter with 2k decoding gates to provide outputs for 2k
timing signals.

A switch-tail ring counter is a circular shift register with the complement output of the

last flip-flop connected to the input of the first flip-flop.

e A k-bit ring counter circulates a single bit among the flip-flops to provide k
distinguishable states.

e The number of states can be doubled if the shift register is connected as a switch-tail ring

counter.

Sequence Flip-flop outputs AND gate required
number A B C E for output

A'E’
AB’
BC
CE'
AE
A'B
B'C
C'E

(== T =~
Sr——— — oo
—_———o oo

Q
|
=
Q
I
&
Q
|
2
Q
S =3 S ln B W =
OO O - — O

CcP

(a) Four-stage switch-tail ring counter (b) Count sequence and required decoding,
Fig: Construction of a Johnson counter

The eight AND gates listed in the table, when connected to the circuit will complete the construction of
the Johnson counter. Since each gate is enabled during one particular state sequence, the outputs of the
gates generate eight timing sequences in succession.

Operation:

The decoding of a k-bit switch-tail ring counter to obtain 2k timing sequences follows a regular pattern.
The all-0’s state is decoded by taking the complement of the two extreme flip-flop outputs. The all-1's
state is decoded by taking the normal outputs of the two extreme flip-flops. All other states are decoded
from an adjacent 1, 0 or 0, 1 pattern in the sequence. For example, sequence 7 has an adjacent 0, 1
pattern in flip-flops B and C. The decoded output is then obtained by taking the complement of B and
the normal output of C, or B'C.

= Johnson counters can be constructed for any number of timing sequences. The number of flip-flops
needed is one-half the number of timing signals. The number of decoding gates is equal to the
number of timing signals and only 2-input gates are employed.

Registers, Counters and Memory units Page 12

By Bishnu Rawal
Downloaded from CSIT Tutor

Memory unit (Random Access Memory-RAM)

e A memory unit is a collection of storage cells together with associated circuits needed to
transfer information in and out of the device. Memory cells can be accessed for information
transfer to or from any desired random location and hence the name random access memory,
abbreviated RAM.

e A memory unit stores binary information in groups of bits called words. A word in memory is an
entity of bits that move in and out of storage as a unit. A memory word is a group of 1's and 0's
and may represent a number, an instruction, one or more alphanumeric characters, or any other
binary-coded information.

e The communication between a memory and its environment
is achieved through:
l" data input lines o ndatainput lines : provide information to be
stored in memory
o ndata output lines: supply the information coming

k address lines ——w=q Memory unit out of memory.
Read 3 2% words o kaddress lines: specify particular word chosen
A bit per word among the many available.
Write ———#| o two control inputs: specify the direction of

transfer desired
e Each word in memory is assigned an identification number,
called an address, starting from 0 and continuing with 1, 2, 3,
up to 2% I, where k is the number of address lines.
e Computer memories may range from 1024 words, requiring
an address of 10 bits, to 2% words, requiring 32 address bits.

ln data output lines

Fig: Block Diagram of a memory unit

Conventions for Memory storage:
K (kilo) = 2™
M (mega) = 2%
G (giga) = 2°*°
Thus, 64K = 2'°, 2M = 2%, and 4G = 2*

Example: Memory unit with a capacity of 1K words of 16 bits each. Since 1K = 1024 = 210 and 16 bits
constitute two bytes, we can say that the memory can accommodate 2048 = 2K bytes.
Memory address

Binary decimal Memory content
Each word contains 16 bits, which can be divided
0000000000 0 1011010101011101 into two bytes. The words are recognized by their

decimal address from 0 to 1023. The equivalent
0000000001 L 1010101110001001 binary address consists of 10 bits. The first address
0000000010 3 00001 10101000110 is specified with ten 0's, and the last address is
specified with ten 1's. A word in memory is elected
. . by its binary address. When a word is read or
. : written, the memory operates on all 16 bits as a
. ¢ single unit.
Memory address register (MAR): It is CPU register
1111111101 1021 1001110100010100 which contains the address of the memory words.
111111110 1022 0000110100011110 I;itrr;emory has k address lines, then MAR is of k-
1111111111 1023 1101111000100101

Memory Buffer Register (MBR): It contains the
word-data pointed by the MAR. /

Fig: Possible content of 1024 x 16 memory

Registers, Counters and Memory units Page 13

By Bishnu Rawal
Downloaded from CSIT Tutor

Write and Read Operations

The two operations that a random-access memory can perform are the write and read operations. The
write signal specifies a transfer-in operation and the read signal specifies a transfer-out operation. On
accepting one of these control signals, the internal circuits inside the memory provide the desired
function.

Write Operation: transferring a new word to be stored into memory

1. Transfer the binary address of the desired word to the address lines.
2. Transfer the data bits that must be stored in memory to the data input lines.
3. Activate the write input.

Read Operation: transferring a stored word out of memory

1. Transfer the binary address of the desired word to the address lines.
2. Activate the read input.

Commercial memory components available in IC chips sometimes provide the two control inputs for
reading and writing in a somewhat different configuration. The memory operations that result from
these control inputs are specified in Table below.

Control Inputs to Memory Chip

Memory Enable Read/\rite Memory Operation
0 X None
1 0 Wrile to selected word
1 1 Read from selected word

The memory enable (sometimes called the chip select) is used to enable the particular memory chip in a
multichip implementation of a large memory. When the memory enable is inactive, memory chip is not
selected and no operation is performed. When the memory enable input is active, the read/write input
determines the operation to be performed.

IC memory (Binary Cell- BC)
The internal construction of a random-access memory of m words with n bits per word consists of m x n
binary storage cells and associated decoding circuits for selecting individual words. The binary storage
cell is the basic building block of a memory unit.

Select

l

Select
Input »| BC Output Input —1 — aq s Q ’_j— OQuiput
Read/write Read,write
{b) Block diagram (a) Logic diagram
Fig: Memory Cell
Registers, Counters and Memory units Page 14

By Bishnu Rawal
Downloaded from CSIT Tutor

	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Unit 6
	Unit 7

